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Abstract: Fulfillment of complex missions, such as zone watching or multiple target tracking
by an UAV can prove very demanding in terms of vehicle ability. A potential way of lessening
these demands consists in splitting the initial task into several complementary subtasks. Each
subtask can then be completed by one vehicle of a fleet whose cooperation must guarantee
the satisfaction of the whole mission. In this paper, zone watching is defined as a cooperative
problem where a number of autonomous vehicles must explore a wide area in a limited amount
of time. In addition to zone coverage, the dynamical allocation of exit locations is considered.
A model predictive control approach is adopted in which the requirements of the mission are
specified as cost functions. Simulation results are presented to illustrate the behaviour of the

fleet.
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1. INTRODUCTION

Missions such as surveillance or multiple target tracking
by autonomous vehicles are complex. In order to lower
the cost induced by the development of such abilities
on a single vehicle, research has focused on how such
missions could be fulfilled using a fleet of cheaper and
less sophisticated vehicles. However, to provide the same
result, the vehicles must cooperate. It is required that:

e The combination of the individual actions fulfills the
objectives of the global mission.

e Fach trajectory ensures a secure flight for all vehicles
in the fleet.

Cooperative control of vehicles is an active field of re-
search: in Murray (2007), many applications in military
and civil domains are surveyed, including formation flights
(Jadbabaie et al. (2002)), cooperative attack (Rasmussen
et al. (2004)), or wide area coverage (Ahmadzadeh et al.
(2006a)).

The problem of area search or exploration has been studied
in various contexts with different objectives: Burgard et al.
(2005) address the collaborative mapping of an unknown
area with a team of robots. Parker et al. (2000) pro-
pose a control architecture for the search of targets in a
given zone. Maza and Ollero (2007) allocate search areas
to UAVs by subdividing the mission field into smaller
parts assigned according to the vehicle capabilities. Ah-
madzadeh et al. (2006a) tackle cooperative surveillance by
an UAV fleet by proposing a heuristics which aims at re-
ducing the time any area remains unwatched. Ahmadzadeh
et al. (2006b) consider a limited time exploration scenario
of a mission field by a fleet of vehicles with constrained
entry and exit points: the problem is solved offline by

constructing an admissible flight plan for each vehicle,
ensuring collision and obstacle avoidance through a tree
search in a discretised trajectory search space. Choset
(2001) reviews algorithms for exploring an unknown zone
by a group of vehicles while ensuring total coverage.

This paper adresses a more complex exploration setup.
The main objective of the mission is to explore the un-
known area during a fixed mission duration. In addition,
cooperative target allocation is considered as the vehicles
have to rejoin constrained exit locations at the end of
the mission. The problem considered is to define vehicle
cooperative trajectories so that:

e the cumulated explored area is maximised,

e the mission duration is fixed in advance,

e the vehicles must reach a safe position at the end of
the mission,

e each vehicle defines its own trajectory online.

The trajectories are individually chosen using model pre-
dictive control (MPC) based on exploration and safety
costs. A method for the target allocation derived from
the MPC framework is presented. It consists in approx-
imating the cost to go to an exit based on the MPC
optimal cost to evaluate the suitability of each exit point.
The tractability of the proposed method allows dynamic
reallocations, while limiting the amount of information
shared between the vehicles, and therefore preserves the
decentralised scheme.

2. PROBLEM DESCRIPTION
2.1 Mission definition

The scenario consists in defining cooperative UAV tra-
jectories that maximise a zone coverage in a given time



denoted by Te,q while ensuring collision avoidance and
restrictions on the final positions of the vehicles. Each
vehicle has to reach one of a set of predefined exit zones
at the end of the mission. These exit points represent
shelters or filling stations. Each of these zones can shelter
a limited number of vehicles, denoted n,,q,. Therefore,
the exit point allocation requires to obtain a consensus
between the vehicles to insure that each of them reaches an
exit point before the end of the mission and the sheltering
capacities of the exit point are not exceeded.

The mission objectives are thus:

e Area coverage (Section 4)
e Allocation and reaching of the exit points (Section 5)

while the constraints are:

e Collision avoidance (Section 3)
e Limited mission time (Section 5)
e Limited number of vehicles at a given exit (Section 5)

2.2 UAV model

The n, UAVs are assumed to be identical. The trajectories
are assumed to stay in an horizontal plane and the UAVs
are pointwise. The state and control vectors of each vehicle
i are defined as:
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with x,y the vehicle position, v its speed amplitude, ¥ its
direction and w its rotation speed. The model kinematics
are:

Z; = v;cos W,
yi = V; sin \I/i

Ui = Uy (2)
\I/i = W;

(u?,u?) are the longitudinal and rotational accelerations.
This model, though simplified, has already been used
in the literature: Richards and How (2007); Rochefort
et al. (2012). Further research should include more realistic
dynamics. The constraints on the states and control inputs
are:

—Wmax < % < Wmax

—Awmae < U‘: < AWmag
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We summarize the dynamics and the constraints as:
X; = f(X;,U;) and (X;,U;) € X; x Uy (4)
The superscript ¢ denotes time.

Communication delays and ranges are not considered here,
all the UAVs are assumed to have access to the state of
every vehicle instantly.

2.8 Control framework

MPC has been widely used for UAVs in different contexts.
UAV flocking and formation flight has been treated in
Dunbar and Murray (2006). Distributed MPC is studied in
Richards and How (2007); Rochefort et al. (2012). In dis-
tributed MPC (Scattolini (2009)), each vehicle computes
its control inputs at each timestep as a solution of an opti-
misation problem over the future predicted trajectory. For
tractability reasons, finite prediction and control horizons,
respectively denoted H), and H. are used.

The future control inputs and the resulting state trajecto-
ries are denoted:

U; = ((Uito)T
X; = (Xf)T
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When H. < H,, we assume that the control inputs are 0
after H, steps. Once the optimal input sequences U;* have
been computed, each vehicle communicates its predicted
trajectory to the rest of the fleet and applies the first entry
Ur(ty). The optimisation problems at time ¢y take the
form:

minimise J;(Uj, X;)
over U; € (U;)He
subject to
Vt € [to + 1310 + Hp), X € X;

J; is the cost function for vehicle 7. The constraints cou-
pling the vehicles, such as collision avoidance, are included
by means of a penalty factor in the cost function. At the
next timestep, each vehicle solves its optimisation consid-
ering that the other vehicles will follow their predicted
trajectories.

The cost function .J; is composed of a sum of terms
reflecting the objectives of the mission. In the following
sections, these terms are detailed. Selection of the weights
in the cost functions is discussed in Section 6.1.

3. COLLISION AVOIDANCE

The main constraints on the vehicles relative trajectories
are to avoid collision. These constraints are non-convex
and thus difficult to enforce at all time. Therefore, we
adopted a soft version of these constraints by means of
a cost function. The difficulty is brought in the cost
function which is nonconvex, but the optimisation is
remains feasible.
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where d;;(t) = ||pi(t) —p; (t)]| denotes the distance between
vehicles i and j, and p; = (24, ;)7. aq and B, respectively
parameterize the width of the interval of fast variation of
the hyperbolic tangent and its inflexion point. Note that
the hyperbolic tangent function is nearly constant out of



the domain [dganger, dsafe] Which is related to a, and S,
by:

6 b 1
¢ 2(ddanger + dsafe)

Qg =

dsafe - ddanger

With this choice, the cost variation is less than 5% of its
maximal value in the range [dsq e, +00[. For implementa-
tion, the penalty function is set to 0 for d;; > dsqfe, i.e€.
the vehicles do not "see" each other above this distance.
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Fig. 1. Penalty function for collision avoidance

4. ZONE COVERAGE

A cost function that reflects the gain in terms of map
exploration for a potential trajectory is defined. Each
vehicle is assumed to have a seeker capability described
by a function fe.p of the relative position of the observed
point and the vehicle.

4.1 Ezploration modeling

The previously explored area is:

o= |J D (6)
t=1,...,to
i=1,...,n

with D! the sensing footprint of the vehicle ¢ at time
t. As this representation is impractical, the mission field
is approximated as a grid with spacing dg.sq. A matrix
G stores the level of exploration of each square of the
grid. Each element Gy ; ranges between 0 when no vehicle
has explored this square and 1 when it has been entirely
explored. Each vehicle stores a copy of this exploration
map and updates it with the information from the rest of
the fleet. The precision of the representation only depends
on the parameter dg.;q. When a vehicle comes at a distance
d from the center of square (k,[), the exploration level is
updated in the following fashion:

G;;l = maX(Gk,lv fexpl(d))

The exploration index is increased only if the vehicle is
close enough. The function fep; is chosen to be continuous
and identically O for d > ry,4,. We consider here:

ifd > rmae

Feam(d) = d ) if d < Tyaa

N = @

rmaaz

<1 + cos

Exploration grid
; sensor footprint

I'sensor

\ ) ¢dgrid

Fig. 2. Illustration of exploration cost: colours reflect the
exploration level

4.2 Cost function description

The cost function rewards trajectories increasing the
global level of exploration of the map. It is defined as:

J;wpl (X Wewpl Z t0+H to )

_ —WewpllT.(Gt0+H” o Gto).

where GtotHr ig the predicted exploration map associated
with trajectory X; and 1 the vector whose components
are all 1. This cost function represents the total increase
of the global exploration level resulting from a predicted
trajectory. As the vehicles share information, they are
penalised when flying in already explored zones.

5. EXIT POINT ALLOCATION AND TRACKING

We first describe how a vehicle joins a given exit point and
present how this point is selected.

5.1 Ezxit point rejoining

The cost for reaching a point takes the following form
(Rochefort et al. (2012))
to+Hp
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" penalises the difference between the actual speed
and the desired speed vop, @' favours straight lines
over curved trajectories, ¢ penalises the distance of the
predicted trajectory to a virtual best-case trajectory p;
which is a straight line towards the exit point at speed
Vopt and q);"f encourages the vehicle to get closer to the
exit point by penalising the distance to a reference ball B;
around the exit point illustrated in Figure 3.

5.2 FExit point allocation

Two cases are studied. In the first one, the number of
vehicles n, is identical to the number of exits n; and a
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Fig. 3. Reference trajectory p; and reference ball B;

given exit point can shelter at most one vehicle. In the
second, the number of vehicles exceeds the number of exits
and at most n,,4, vehicles can reach a given exit point.

Caseny = n, The aim is to define a cost which balances
the distance to the exit and the cost in the control inputs
(in other words, favours vehicle which go straight to the
exit compared to ones which change direction). This cost
will serve as a measure of the interest for a given vehicle to
go to an exit and will support the decision of dispatching
the vehicles to the exits. Therefore, it has to discriminate
efficiently between different vehicles aiming for the same
exit.

For each pair of vehicle and exit, the cost function:

t0+Hp—1
JHU X = Y wpt—pe, [P+ WU (10)

t=to

is minimised and an assignment cost matrix R =
(rij)i=1,...,n, is obtained.
J=1,...,n¢

Tij = I%m JZ;'C(U“ Xi)

The optimal assignment is obtained by the hungarian
algorithm (Munkres (1957)).

Case ng < n, In this case, at most n,,., vehicles can go
to the same exit point at the end of the mission. The (n, x
ng) matrix R is built. A heuristics is used to find a good
admissible assignment: each vehicle forms a list of wishes
based on his cost evaluations. These costs are centralised
and it is checked whether no more than n,,., vehicles aim
for each exit. In case of conflict, the admissible alternative
exits are considered. The minimising costs among these
are chosen for each conflicting vehicle, one after the other.
In these two cases, the construction of the cost matrix
is decentralised but information has to be centralised to
perform the actual assignment.

5.8 Dynamic reallocation of exit points

We have described a situation where the vehicles explore
a zone and reach an exit at the end of the allocated time.
The final constraints on the positions require a terminal
allocation at all time merely to ensure satisfaction of the
constraints on the maximal number of vehicles for each
exit. Nevertheless, if enough time remains, the vehicles
should focus on exploration. Therefore, the initial assign-
ment could be reconsidered after some time: a reallocation
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Table 1. Renormalisation coefficients

of the vehicles may prove beneficial. One option is to
repeat the assignment procedure presented in the previous
subsection during the mission. However, it could lead to
an undesirable situation where, in order to decrease the
total cost, the global optimisation assigns an exit to a
vehicle that cannot reach it before the end of the mission.
Consequently, a penalty linking the time needed to reach
the exit and the remaining mission time is added. It is
expressed as follows:

0 it T > Tsafe

Tsa e_T ?
! ) if T < Toafe (

Sij = ( 11)
Tsafe - Tdanger

. .. . lpi —pe; |l
where T is the remaining time, Tyonger = ———2 and

Vopt

Tsafe = fsafe-Taanger +Tmargin, C; the position of the exit.
Tmargin and fsqfe are predefined parameters. The matrix
used for the global assignment is R’ = (},)i=1,...,n, With

Jj=1,...,n¢

7i; = 7ij + sij. The continuous variation of the penalty
prevents vehicles from choosing unreachable exit points
provided the reallocation is performed often enough. Re-
peating the allocation procedure frequently represents a
large computational load: therefore instead of using the
nonlinear dynamical model, a simple linear model (double
integrator) is used to approximate the dynamics. This does
not significantly deteriorate the performances because only
estimates of the costs to go are required in order to
choose a reasonable assignment. The linear approximation
and the constraints translation is taken from (Richards
and How (2007)). The reallocation does not need to be
repeated at each timestep, but only from time to time.

6. GLOBAL PENALTY FUNCTION

The choice of optimal control entries should take into
account the three main aspects previously described: col-
lision avoidance, map exploration, and exit point assign-
ment. Therefore, the cost function is:

Ji _ JiCO” +Jiexpl +sz (12)

6.1 Weighting of the functions

Each penalty function and its subcomponents are weighted
with a coefficient W*® = k®.w® with k®* a normalisation
coefficient and w® a weighting coefficient. The k°® (Table 1)
coefficients are chosen so that without weighting, the worst
case cost would be around 1.

Note that k¢ is chosen so that exit allocation can be fairly
performed between the vehicles:

. 1 Ny Nt
dist = - Z Z lpi — pe, || (13)
TV =1 j=1

is the average distance between vehicles and targets.



VUmin 0.3 m.s—1 Vopt 0.7 m.s—1 Umazx 1.0 m.s—1!
Awmazx 0.1 rd.s—1 Avmaz 0. 1m.s™! | wmaz 0.5 rd.s™!
ddanger 4m dsafe 8m weell 5

wmf 1 w™mt 2 wewpl 2

w 0.5 w™v 0.3 w™m 0.2

w 2 fsafe 1.1 Cmin 0.2

H. 2s Hy, 21 s Tmax 5m
Trmargin 15 s dgrid 2.5m

Table 2. Simulation parameters

6.2 Dynamic weighting of the functions

As the total time allocated for the mission is known, it is
preferable to join the exit point only when the vehicles run
out of time. A dynamic weighting procedure is proposed:
the exploration and exit rejoining costs are weighted with
respect to the difference between the estimated time to
reach the exit and the actual remaining time. A scheme
inspired by Ahmadzadeh et al. (2006a) is adopted: the
exploration of the map is initially favoured in the cost func-
tion, whereas exit points progressively take more impor-
tance in the cost function as the remaining time decreases.
This translates in the algorithms by means of balancing
coefficients C¢*P!, C™ and C™f which multiply We*P!,
W™ et W™/ as reported in Algorithm 1.

Algorithm 1 Calculation of the weighting coefficients

(1) Compute d = dist(p;,c;) distance between vehicle ¢
and its exit point.

(2) Compute Tygnger vit
time to reach the exit assuming a straight path and
nominal speed. Compute Tsqre = fsafe-Ldanger +
Tmargin an overestimate of Tyqf. considered as
comfortable to reach the exit.

(3) Compute:

et {
ot et {

7. SIMULATION RESULTS

the estimated minimal

0 if T < Tianger

T — Tganger .
- if Tganger <T < Tsafe

Tsafe - Tdanger
1 if T > Tsufe

1 if T < Tdanger
Cm,in(T - Tda.n_qcr) + Tsafe -7

Tsafe — T — danger

if T > Toope

Cmin

This section presents simulation results illustrating the
procedure. Simulation parameters are grouped in Table 2.
The different requirements of the mission are first individ-
ually illustrated and quantitative simulation results are
then given.

7.1 Collision avoidance and exit rejoining

The vehicles are positioned so that they have to cross paths
to reach their exit points. No reallocation is allowed and
map exploration is not taken into account. The dashed
lines denote the past trajectories of the vehicles whereas
the dotted short lines depict the predicted trajectories
at current time. The circles denote the danger zones
around the vehicles. Figure 4 shows that vehicles can
reach agreements even in complex situations to cross ways
without endangering themselves or the other vehicles.

Fig. 4. Tllustration of the collision avoidance

7.2 Map exploration and exit assignment

Map exploration and exit assignment are illustrated with
a 4 vehicle scenario presented in Figure 5. Exits are chosen
randomly for each vehicle and no reallocation is allowed.
It compares the behaviour of the vehicles in two different
settings: (a) dynamic weighting of exploration and exit
assignment with respect to remaining time versus (b)
constant weights. The main difference is that, in case (a),
the vehicles can go far away from their exit point as long
as time remains and consequently it is easier for them to
find new zones to explore, while in case (b) vehicles tend
to stay close to their exit point.

(a) Weighting factors are dynamic:
exploration is first favoured and the
exiting cost progressively prevails

if Tganger <T < Tsafe

(b) Weighting factors are constant
Fig. 5. Comparison of different exploration strategies
7.8 Dynamic reallocation

Dynamic reassignment is illustrated in Figure 6. The cur-
rent assignment in the figures is depicted by matching
colours. The mission state is displayed at different instants
of the mission. In this particular instance, the vehicle
beginning in the top left corner conserves his initial as-
signment during the mission, whereas the two others do
not. One of them first changes his exit whereas the last
one also changes his plan later on.

7.4 Performances

To evaluate the performance of the strategies, a set of 70
missions is simulated with different configurations. The
settings are:

e No exploration is considered: each vehicle chooses an
exit and joins it as soon as possible. (A)



Fig. 6. Online reassignment of the exit points: colours of
the vehicles correspond to the assigned target

| Expl(%) | danger(%) | dewit(m)

A [ 209 (3.0) 14 4.2(0.2)
B | 44.4 (5.0) 5.7 8.4(2.7)
C | 58.3(3.2) 11.4 6.2(1.7)
D | 59.1 (3.3) 8.5 6.5(2.5)

Table 3. Simulation results (standard devia-
tions are given between brackets)

e Exploration is considered but weightings of explo-
ration and exit rejoining in the cost function are fixed
throughout the mission. (B)

e Exploration is valued at the beginning of the mission
and exit reaching progressively becomes the dominant
term. (C)

e Configuration is identical to (C) but reassignment is
authorised. (D)

In each mission, a 78mx78m field is explored by 4 vehicles
with a mission time of 300s. The position of the vehicles
and the 4 exit locations are chosen randomly for each run.
The mission is performed for the 4 configurations and the
results are given in Table 3. Expl(%) is the portion of
the map which has been explored during the mission. It
takes into account both the number of squares explored
and their respective level of exploration. Danger gives the
amount of mission during which a dangerous situation
has occured, that is when 2 vehicles come closer than
a distance of dggnger at some point during the mission.
desit gives the average distance of the vehicles to their
exit targets at the end of the mission. We can observe
that map exploration costs allow a better exploration, and
dynamic weighting increases even more the efficiency of the
exploration, as expected. However, it also increases the
number of dangerous situations: adding the exploration
cost increases the chances for several vehicles to come in
the same zone and therefore increases the collision risks.
What is more, dynamical reallocation reduces these risks
significantly, while preserving the exploration efficiency.

8. CONCLUSIONS AND PERSPECTIVES

A cooperative guidance approach has been presented for
wide zone surveillance by a fleet of UAVs. The exploration
is time-constrained and each vehicle must reach a safe exit
platform at the end of the mission. Platforms can shelter
a limited number of vehicles, so a dynamic allocation
method is proposed. During the mission, the cooperative
guidance laws based on MPC dynamically balance explo-

ration and exit assignment while avoiding collisions. The
results presented show that a global complex mission can
be satisfactorily fulfilled by use of a short-sighted and
distributed architecture of control. This method renders
the problem tractable and allows to choose the actions
to be taken online. Further developments include 3D
representation, further investigation of the optimisation
methods and more realistic UAV representations including
communication delays and state estimation.
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