
A new strategy for worst-case design from costly numerical simulations

Julien Marzat, Éric Walter, Hélène Piet-Lahanier

Abstract— Worst-case design is important whenever robust-
ness to adverse environmental conditions should be ensured
regardless of their probability. It leads to minimax optimization,
which is most often considered assuming that a closed-form
expression for the performance index is available. In this paper,
we consider the important situation where this is not the case
and where evaluation of the performance index is via costly
numerical simulations. In this context, strategies to limit the
number of these evaluations are of paramount importance. This
paper describes one such strategy, which further improves the
performance of an algorithm recently presented that combines
the use of a relaxation procedure for minimax search and
Kriging-based efficient global optimization. Test cases from the
literature demonstrate the interest of the approach.

Index Terms— computer experiments, Kriging, minimax, op-
timization, robust design, surrogate models, worst case.

I. INTRODUCTION AND PROBLEM STATEMENT

For a wide class of design problems, a design vector xc

must be tuned to achieve the best performance possible while
protecting oneself against the potentially adverse effects of
an environment vector xe. Such problems are important in
the context of robust control, estimation and decision. A few
examples are as follows:
• in fault detection and isolation, xc may correspond to

the tuning parameters of a bank of Kalman filters and of
statistical decision tests, and xe may include parameters
describing environmental perturbations and degrees of
freedom of the tests on which the performance index is
computed,

• in robust control, xc may correspond to the tuning
parameters of a controller, and xe may describe uncer-
tainty on the process to be controlled,

• in particle filtering, xc may correspond to parameters
describing the strategy for managing the number of
particles, whereas xe makes it possible to consider a
large family of test cases in order to widen the scope
of the resulting tuning,

• in computer-aided design, xc may correspond to design
parameters, and xe may describe uncertainty on the
value of xc in mass production.

The approaches available for addressing such robust design
problems can be classified as stochastic or deterministic.
With stochastic approaches, one may optimize with respect
to xc the mathematical expectation with respect to xe of
some performance index. This requires the availability of
the probability distribution of xe, and may result in a

J. Marzat and H. Piet-Lahanier are with ONERA – The French Aerospace
Lab, F-91123 Palaiseau, France, firstname.lastname@onera.fr

É. Walter is with the Laboratoire des Signaux et Systèmes (L2S), CNRS-
SUPELEC-Univ-Paris-Sud, France, firstname.lastname@lss.supelec.fr

design that is good on average but unsatisfactory in low-
probability regions of the xe-space. Minimax (or worst-case)
approaches, on the other hand, give equal consideration to
all possible values of xe. This is the approach considered
here, where we want to compute

{x̂c, x̂e} = arg min
xc∈Xc

max
xe∈Xe

J (xc,xe) , (1)

with J(·, ·) a scalar performance index, xc ∈ Xc a vector
of design parameters and xe ∈ Xe a vector of perturbation
parameters. Xc and Xe are assumed to be known compact
sets. Any pair {x̂c, x̂e} such that (1) is satisfied is a minimax
(or worst-case) solution of the problem.

Depending on how J is described, different approaches
can be considered. Most often, a closed-form expression for
J is assumed to be available [1]–[3]. Unfortunately, in real-
life complex design problems, this is not the case, and J
can only be evaluated numerically through possibly very
costly simulations. The methodology developed in this paper
is dedicated to this important class of difficult problems.

In this context, the relaxation procedure proposed in [4]
is particularly useful. This procedure is generic and does not
specify the optimization algorithms to be used. For costly
simulations, specific tools are needed. Most of the available
techniques use evolutionary algorithms [5], [6], which are
known to be computationally expensive and thus inapplicable
in our context. An interesting attempt combining the use
of a surrogate model with a heuristic optimization strategy
has been reported in [7]. In [8], [9], we have proposed
MiMaReK, a robust design approach combining Kriging-
based optimization, one of the most efficient tools in the
context of costly evaluations, with Shimizu and Aiyoshi’s
relaxation procedure. The new algorithm described in the
present paper improves MiMaReK by further reducing the
number of evaluations required. The presentation is or-
ganized as follows. Section II briefly recalls the original
MiMaReK framework. Section III describes the new strategy,
which is evaluated and compared to the previous one on test
cases in Section IV.

II. MINIMAX OPTIMIZATION VIA RELAXATION AND
KRIGING

A. Relaxation procedure

Equation (1) translates into the following optimization
problem with an infinite number of constraints,{

min
xc∈Xc

τ,

subject to J(xc,xe) ≤ τ, ∀xe ∈ Xe.
(2)



The Shimizu and Aiyoshi procedure (Algorithm 1) relaxes
these constraints iteratively to compute an approximate min-
imax solution with proved convergence to an exact solution
when εR under reasonable technical conditions [4].

Algorithm 1 Minimax optimization via relaxation

1: Pick x
(1)
e ∈ Xe, and set Re =

{
x
(1)
e

}
and i = 1.

2: Compute x(i)
c = arg min

xc∈Xc

{
max
xe∈Re

J(xc,xe)

}
3: Compute x(i+1)

e = arg max
xe∈Xe

J(x(i)
c ,xe)

4: If J(x(i)
c ,x(i+1)

e )− max
xe∈Re

J(x(i)
c ,xe) < εR then return{

x
(i)
c ,x

(i+1)
e

}
as an approximate solution to the initial

minimax problem (1).
Else, append x

(i+1)
e to Re, increment i by 1 and go to

Step 2.

Constraint relaxation is achieved at Step 2, where the
function to be minimized is the maximum of the performance
index over the finite set Re. Steps 2 and 3 leave open the
choice of the algorithm to be employed to compute the
optima required. We use Kriging-based optimization, which
makes it possible to save on the simulation budget.

B. Kriging

Consider a black-box function f(x), known only through
numerical evaluations, to be minimized over a known com-
pact set X. Assume that the value of the function has already
been evaluated at n points, Xn = {x1, . . . ,xn} and denote
by fn = [f(x1), . . . , f(xn)]T the vector of the corresponding
function values. Kriging makes it possible to predict the
value of f over the continuous space X by modelling it
as a zero-mean Gaussian Process Z(x), whose covariance
function is expressed as

cov (Z(xi,xj)) = σ2
ZR(xi,xj), (3)

where σ2
Z is the process variance and R(·, ·) a correlation

function, possibly parameterized by a vector θ. In this paper,
we use the correlation function

R(xi,xj) = exp

(
−

dimX∑
k=1

∣∣∣∣xi(k)− xj(k)

θk

∣∣∣∣2
)
, (4)

where xi(k) is the k-th component of xi and the positive
coefficients θk are scale factors. It should be kept in mind
that other correlation functions may be appropriate [10]. For
any value of x ∈ X, the Kriging prediction is Gaussian and
thus entirely characterized by its mean and variance. The
mean of the prediction is given by

f̂(x) = r (x)
T

R−1fn, (5)

where

R|i,j = R(xi,xj), {i, j} = 1, ..., n,

r(x) = [R(x1,x), ..., R(xn,x)]
T
.

(6)

The variance of the prediction is

σ̂2 (x) = σ2
Z

(
1− r (x)

T
R−1r (x)

)
. (7)

The process variance σ2
Z and the vector of parameters θ

of the correlation function (if any) can be estimated, for
instance, by maximum likelihood. The fact that the prob-
ability distribution of the Kriging prediction is available is
an important feature that will be extensively used below.

C. Efficient Global Optimization

Algorithm 2 describes the Efficient Global Optimization
(EGO) procedure [11], which exploits the distribution of
Kriging prediction to search for a global minimizer of f .

Algorithm 2 Efficient Global Optimization
1: Choose an initial sampling Xn = {x1, ...,xn} in X
2: Compute fn = [f (x1) , ..., f (xn)]T

3: while max
x∈X

EI(x) > εEI and n < nmax do
4: Fit the Kriging model on the known data points

{Xn, fn} with (5)-(7)
5: Find fnmin = min

i=1,...,n
{f (xi)}

6: Find xn+1 = arg max
x∈X

EI(x)

7: Compute f(xn+1), append it to fn and append xn+1

to Xn

8: n← n+ 1
9: end while

EGO is initialized by sampling n points in X, e.g., with
Latin Hypercube Sampling (LHS), and by computing the
corresponding values of the function to be minimized. Let
Φ(z,x) be the (Gaussian) cumulative distribution of the
Kriging prediction at z, when the vector of parameters takes
the value x. The corresponding probability density is given
by

ϕ(z,x) ,
d

dz
(Φ(z,x)) . (8)

Define improvement [12] as

(fnmin − z)+ =

{
(fnmin − z) if positive

0 otherwise
, (9)

where fnmin is the smallest value in fn. The expected value
of the improvement (EI) based on the Kriging prediction is
defined as

EI(x) =
∫ +∞
−∞ (fnmin − z)+ϕ(z,x)dz

=
∫ fn

min

−∞ (fnmin − z)ϕ(z,x)dz,
(10)

which can be computed in closed-form using (5) and (7) as

EI
(
x, fnmin, f̂ , σ̂

)
= σ̂ (x) [uΦN (u) + ϕN (u)] , (11)

where ΦN is the cumulative distribution function and ϕN
the probability density function of the normalized Gaussian
distribution N (0, 1), and where

u =
fnmin − f̂ (x)

σ̂ (x)
. (12)



EGO achieves an iterative search for the global minimum
of f and an associated global minimizer. Note that the
optimization of EI is carried out at a much lower com-
putational cost than required by the original problem, as
no evaluation of the performance index is necessary. By
optimizing EI, EGO strikes a compromise between local
search (in the neighborhood of the current estimate of the
minimizer) and global search (where prediction uncertainty
is high). Convergence results are reported in [13], [14].

D. MiMaReK

MiMaReK (for Minimax optimization via relaxation and
Kriging) searches for the solution of (1) by combining
Algorithms 1 and 2. The resulting procedure, presented in
more detail in [8] and [9], is Algorithm 3.

Even if the first version of MiMaReK (called MiMaReK 1
in what follows) turned out to be quite efficient for an eco-
nomical determination of the solutions of minimax problems,
it presents the following drawback. Each iteration of its outer
loop requires building two dedicated Kriging predictors from
scratch (one for predicting, for a given value of xc, the
performance index J as a function of xe, and the other
for predicting the maximum of J over a finite number of
values of xe, as a function of xc). This entails a number
of costly evaluations of J , some of which could hopefully
be avoided by using a single Kriging predictor for J in the
entire procedure, updated whenever a new evaluation of J is
carried out.

III. NEW STRATEGY FOR SAVING EVALUATIONS

A first simple step towards decreasing the number of
evaluations of J is to use a single Kriging predictor for all
maximizations of J(x

(i)
c ,xe) with respect to xe (Step 3 of

Algorithm 3), whatever the value of i. This Kriging predictor
is based on all past evaluations of the performance index, and
each execution of the outer loop increases the number of its
training data.

Using the same Kriging predictor for the minimization of
maxxe∈Re J(xc,xe) is significantly more complex. An easy-
to-implement idea would be to approximate the mean of this
process by

µ̂(xc) = max
xe∈Re

Ĵ(xc,xe) , Ĵ(xc, x̌e) (13)

and its variance by

σ̂2(xc) = σ̂2(xc, x̌e), (14)

with Ĵ and σ̂2 computed by Kriging. It would then become
trivial to compute EI as needed by EGO. However, this is a
daring approximation, as the mean of the maximum is not the
maximum of the means and the distribution of the maximum
is not Gaussian. Preliminary tests have confirmed that this
approach is not viable.

In the new version of MiMaReK (called MiMaReK 2 in
what follows), we instead compute the expected improve-
ment of maxxe∈Re J(xc,xe) exactly.

Let Xi (i = 1, . . . ,m) be m independent random vari-
ables, with pdf ϕXi and cumulative distribution function ΦXi

and let
Z = max

i
Xi. (15)

Z is less than z, if and only if all the Xi’s are less than z,
so

ΦZ(z) =

m∏
i=1

ΦXi
(z). (16)

The pdf of Z is thus

ϕZ(z) ,
d

dz
(ΦZ(z)) =

m∑
i=1

ϕXi
(z)
∏
j 6=i

ΦXj
(z). (17)

Here, Xi ∼ N (Ĵ(xc,x
i
e), σ̂

2(xc,x
i
e)), where xi

e is the i-th
xe vector in Re, and Ĵ and σ̂2 are provided by Kriging, so

ϕXi
(z) =

1√
2πσ̂2(xc,xi

e)
exp

−1

2

(
z − Ĵ(xc,x

i
e)
)2

σ̂2(xc,xi
e)

 .

(18)
The values of the vectors xi

e are all known at Step 2, so ϕZ

is parametrized by xc only and

ϕZ(z,xc) =

m∑
i=1

ϕXi(z,xc)
∏
j 6=i

ΦXj (z,xc). (19)

For any given xc and z, ϕZ(z,xc) can be evaluated numeri-
cally. It is therefore possible to evaluate the EI for any value
of xc. Note that the closed-form expression (11) for EI is no
longer valid.

The new expression for expected improvement is

EI(xc) =

∫ fn
min

−∞
(fnmin − z)ϕZ(z,xc)dz. (20)

In Algorithm 4,Re(l) stands for the l-th vector in the setRe,
and Jc(l) is the l-th scalar value in the set Jc. The sets J ′c
and X ′c are temporary, and used to store the data generated at
Step 2d. Only the minimum value of the performance index
and corresponding argument will be kept and stored in Jc
and Xc. This will save evaluations at Step 2b. Optimization
at Steps 3(b)ii and 3c is carried out over the values of the
performance index such that their xc argument is equal to
x
(i)
c . Since EGO has been presented for minimization, the

maximization of J carried out at Steps 3(b)ii and 3c is
transformed into the minimization of −J .

Simplifying hypotheses make it possible to get a rough
assessment of how many evaluations may be saved by using
MiMaReK 2 rather than MiMaReK 1. Let the total number
of initial samples nc + ne be the same in MiMaReK 1
and MiMaReK 2. Assume that the maximum numbers of
iterations (ncEI and neEI) are reached during the optimizations
by EGO. For N iterations of the outer loop, the required
number of evaluations is

nMM1 = N

(
nc + ne +

N + 1

2
ncEI + neEI

)
(21)



Algorithm 3 MiMaReK 1, MiniMax optimization via Relaxation and Kriging Version 1
Set εR, εcEI, n

c
EI, ε

e
EI, n

e
EI, nc, ne.

1) Step 1
a) Choose randomly x

(1)
e in Xe. Initialize Re =

{
x
(1)
e

}
. Set i← 1.

b) Choose a design X c
0 = {xc,1, ...,xc,nc

} in Xc.
c) Choose a design X e

0 = {xe,1, ...,xe,ne} in Xe.
while e > εR

2) Step 2
a) Initialize j ← nc and X c

j = X c
0 .

b) Compute Jc
j =

{
max
xe∈Re

{J (xc,1,xe)} , ..., max
xe∈Re

{J (xc,nc
,xe)}

}
.

c) while max
xc∈Xc

{EI(xc)} > εcEI and j < ncEI

i) Fit a Kriging model on the known data points
{
X c

j ,J
c
j

}
.

ii) Find Jj
min = min

1...j

{
Jc
j

}
.

iii) Find the next point of interest xc,j+1 by maximizing EI(xc)
iv) Append xc,j+1 to X c

j .
v) Find max

xe∈Re

{J (xc,j+1,xe)} and append it to Jc
j .

vi) j ← j + 1.
end while

d) Find x(i)
c = arg min

xc∈X c
j

{
Jc
j

}
e) Compute eprec = max

xe∈Re

J
(
x(i)
c ,xe

)
3) Step 3

a) Initialize k ← ne and X e
k = X e

0 .
b) Compute Je

k =
{
−J

(
x
(i)
c ,xe,1

)
, ...,−J

(
x
(i)
c ,xe,ne

)}
.

c) while max
xe∈Xe

{EI(xe)} > εeEI and k < neEI

i) Fit a Kriging model on the known data points {X e
k ,J

e
k}.

ii) Find Jk
max = min

1...k
{Je

k}.
iii) Find the next point of interest xe,k+1 by maximizing EI(xe)
iv) Append xe,k+1 to X e

k .
v) Compute −J

(
x
(i)
c ,xe,k+1

)
and append it to Je

k.
vi) k ← k + 1.
end while

d) Find x(i+1)
e = arg min

xe∈X e
k

{Je
k} and append it to Re

4) Step 4
a) Compute e = J

(
x
(i)
c ,x

(i+1)
e

)
− eprec

b) i← i+ 1

end while

for MiMaReK 1 and

nMM2 = nc + ne +N

(
N + 1

2
(ncEI + 1) + neEI

)
(22)

for MiMaReK 2. Thus

nMM1 − nMM2 = (N − 1) (nc + ne)−
N (N + 1)

2
, (23)

which means that MiMaReK 2 requires less evaluations than
MiMaReK 1 if, for N > 1,

nc + ne >
N (N + 1)

2 (N − 1)
. (24)

This inequality will usually be verified, as can be seen in the
examples of the next Section. A large number of iterations
are indeed required to make the right-hand side larger than
the total number of initial samples nc + ne.

IV. COMPARISON ON TEST CASES

In this section, we evaluate and compare the performances
of MiMaReK 1 and MiMaReK 2 on six test cases. As
these test cases have also been used in [5], [6] and [7], this
facilitates comparisons with alternative approaches. The first



Algorithm 4 MiMaReK 2, MiniMax optimization via Relaxation and Kriging Version 2
Set εR, εcEI, n

c
EI, ε

e
EI, n

e
EI, n

1) Step 1
a) Choose a design X =

{
[xT

c,1,x
T
e,1]T, ..., [xT

c,n,x
T
e,n]T

}
in X = Xc × Xe

b) Compute Jn = [J(xc,1,xe,1), ..., J(xc,n,xe,n)]T

c) Choose randomly an index i0 ∈ [1, ..., n]

d) Initialize x
(1)
e = xe,i0 , Re =

{
x
(1)
e

}
, Xc = {xc,i0} and Jc = {J(xc,i0 ,xe,i0)}

e) Set i← 1

while e > εR

2) Step 2
a) Initialize j ← 0
b) for l = 1 to card(Xc) do
Jc(l) = max

(
Jc(l), J(Xc(l),x

(i)
e )
)

.
end for

c) Set J ′c = Jc and X ′c = Xc

d) while max
xc∈Xc

{EI(xc)} > εcEI and j < ncEI

i) Fit a Kriging model on the data {X ,Jn}.
ii) Find Jj

min = minJ ′c
iii) Find the next point of interest xc,j+1 = arg max

xc∈Xc

EI(xc) with (20)

iv) Append [xT
c,j+1,Re(1)T]T, ..., [xT

c,j+1,Re(i)
T]T to the design X

v) Compute J(xc,j+1,Re(1)), ..., J(xc,j+1,Re(i)) and append them to the performance vector Jn

vi) n← n+ i
vii) Compute max {J(xc,j+1,Re(1)), ..., J(xc,j+1,Re(i))} and append it to J ′c

viii) Append xc,j+1 to X ′c
ix) j ← j + 1

end while
e) Compute eprec = min {J ′c} and append it to Jc
f) Append x

(i)
c = arg min {J ′c} to Xc

3) Step 3
a) Initialize k ← 0
b) while max

xe∈Xe

{EI(xe)} > εeEI and k < neEI

i) Fit a Kriging model on the data {X ,Jn}
ii) Find Jk

max = min
xc=x

(i)
c

{−Jn}

iii) Find the next point of interest xe,k+1 = arg max
xe∈Xe

EI(xe)

iv) Append [x
(i)T
c ,xT

e,k+1]T to X
v) Compute J

(
x
(i)
c ,xe,k+1

)
and append it to Jn

vi) n← n+ 1
vii) k ← k + 1

end while
c) Find x(i+1)

e = arg min
xc=x

(i)
c

{−Jn} and append it to Re

4) Step 4
a) Compute e = J

(
x
(i)
c ,x

(i+1)
e

)
− eprec

b) i← i+ 1

end while



TABLE I
RESULTS FOR THE TESTS FUNCTIONS WITH MIMAREK 1

(OBTAINED FROM 50 RUNS)

Function

MiMaReK 1
Percentage of deviation Number of evaluations

from theoretical optimum of the performance index

Mean Std. dev. Mean Std. dev.

f1 0 0 52 1

f2 0.17 7.4 · 10−3 270 68

f3 0.12 4 · 10−4 281 72

f4 3.5 0.02 279 89

f5 0.76 0.01 94 4

f6 2.51 0.23 223 89

four test functions have scalar arguments

f1(xc, xe) = (xc − 5)2 − (xe − 52),

f2(xc, xe) = min{3− 0.2xc + 0.3xe, 3 + 0.2xc − 0.1xe},

f3(xc, xe) =
sin(xc − xe)√

x2
c + x2

e

, f4(xc, xe) =
cos

(√
x2
c + x2

e

)
√
x2
c + x2

e + 10
,

while the last two have two-dimensional vector arguments

f5(xc,xe) = 100(xc2 − x2
c1)

2 + (1− xc1)
2

− xe1(xc1 + x2
c2)− xe2(x

2
c1 + xc2),

f6(xc,xe) = (xc1 − 2)2 + (xc2 − 1)2 + xe1(x
2
c1 − xc2)

+ xe2(xc1 + xc2 − 2).

For each of the test cases and both versions of MiMaReK,
the following applies:

• the selection of the n initial sample points is carried out
by LHS, with the usual rule of thumb n = 10×dimX,

• maximization of the EI criterion is performed by the DI-
RECT optimization procedure, as recommended in [15],

• the thresholds (εR, εcEI, ε
e
EI) are set to 10−3, and the

maximum numbers of iterations ncEI and neEI are set to
20× dimXc and 20× dimXe respectively.

For each version of MiMaReK, Tables I and II give
the percentage of deviation of the value of the minimax
performance index fi(x̂c, x̂e) from its true value and the
number of evaluations of fi (i = 1, ..., 6). The mean
(and standard deviation) of these results have been obtained
by averaging 50 runs for each function. The number of
evaluations performed by MiMaReK 2 is always significantly
smaller (and sometime very significantly smaller) than that
of MiMaReK 1, and condition (24) is always satisfied.
The estimated values of fi(x̂c, x̂e) are always close to one
another and to the actual value.

In [5] and [6], between 104 and 105 evaluations of the
functions were required to achieve similar performance.
In [7], the authors set the number of evaluations of the
performance index a priori to 110 for each of the six test-
cases, which did not allow them to obtain a suitable solution
for f6.

TABLE II
RESULTS FOR THE TESTS FUNCTIONS WITH MIMAREK 2

(OBTAINED FROM 50 RUNS)

Function

MiMaReK 2
Percentage of deviation Number of evaluations

from theoretical optimum of the performance index

Mean Std. dev. Mean Std. dev.

f1 7.1 · 10−3 8 · 10−5 35 3

f2 0.06 1 · 10−3 98 29

f3 0.88 1.6 · 10−3 189 38

f4 2.9 0.04 174 12

f5 0.99 5 · 10−3 58 4

f6 0.4 0.01 101 11

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a new strategy for further reducing the
number of evaluations of the performance index of a worst-
case design problem has been presented. On reference test
cases of the literature, it has been shown to be very effective.
More complex, real-life design problems are currently being
investigated.

REFERENCES

[1] D. Du and P. M. Pardalos, Minimax and Applications. Kluwer
Academic Publishers, Norwell, 1995.

[2] B. Rustem and M. Howe, Algorithms for Worst-Case Design and
Applications to Risk Management. Princeton University Press, 2002.

[3] P. Parpas and B. Rustem, “An algorithm for the global optimization
of a class of continuous minimax problems,” Journal of Optimization
Theory and Applications, vol. 141, no. 2, pp. 461–473, 2009.

[4] K. Shimizu and E. Aiyoshi, “Necessary conditions for min-max prob-
lems and algorithms by a relaxation procedure,” IEEE Transactions
on Automatic Control, vol. 25, no. 1, pp. 62–66, 1980.

[5] A. M. Cramer, S. D. Sudhoff, and E. L. Zivi, “Evolutionary algo-
rithms for minimax problems in robust design,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 2, pp. 444–453, 2009.

[6] R. I. Lung and D. Dumitrescu, “A new evolutionary approach to
minimax problems,” in Proceedings of the 2011 IEEE Congress on
Evolutionary Computation, New Orleans, USA, 2011, pp. 1902–1905.

[7] A. Zhou and Q. Zhang, “A surrogate-assisted evolutionary algorithm
for minimax optimization,” in Proceedings of the 2010 IEEE Congress
on Evolutionary Computation, Barcelona, Spain, 2010, pp. 1–7.

[8] J. Marzat, E. Walter, and H. Piet-Lahanier, “Min-max hyperparameter
tuning with application to fault detection,” in Proceedings of the 18th
IFAC World Congress, Milan, Italy, 2011, pp. 12 904–12 909.

[9] J. Marzat, E. Walter, F. Damongeot, and H. Piet-Lahanier, “Robust
automatic tuning of diagnosis methods via an efficient use of costly
simulations,” in Proceedings of the 16th IFAC Symposium on System
Identification, Brussels, Belgium, 2012, pp. 398–403.

[10] T. J. Santner, B. J. Williams, and W. Notz, The Design and Analysis
of Computer Experiments. Springer-Verlag, Berlin-Heidelberg, 2003.

[11] D. R. Jones, M. J. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[12] M. Schonlau, Computer Experiments and Global Optimization. PhD
Thesis, University of Waterloo, Canada, 1997.

[13] E. Vazquez and J. Bect, “Convergence properties of the expected
improvement algorithm with fixed mean and covariance functions,”
Journal of Statistical Planning and Inference, vol. 140, no. 11, pp.
3088–3095, 2010.

[14] A. D. Bull, “Convergence rates of efficient global optimization algo-
rithms,” Journal of Machine Learning Research, vol. 12, pp. 2879–
2904, 2011.

[15] M. J. Sasena, Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations. PhD
Thesis, University of Michigan, USA, 2002.


