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Abstract: We address the safe-navigation problem for aerial robots in the presence of mobile
obstacles. Our approach relies on an original dynamic model defined in a cylindrical-coordinate
space. It is assumed that the environment contains moving obstacles, that are encoded as state
constraints so that they are embedded in the control design: the controller is constructed so as
to generate a force field which, in turn, is derived from a potential with negative gradient in
the vicinity of stable equilibria and positive gradient in the vicinity of obstacles. In particular,
we combine the so-called Barrier Lyapunov Functions (BLF) method with the backstepping
technique to obtain a smooth time-invariant controller. It is guaranteed that the robot reaches its
destination from any initial condition in the valid workspace (that is, the environment stripped of
the obstacles’ safety neighborhoods) while avoiding collisions. Furthermore, the performance of
our control approach is illustrated via simulations and experiments on a quadrotor benchmark.
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1. INTRODUCTION

Navigation of robotic vehicles in cluttered environments
has been widely studied in the last decade and continues
to be a subject of great interest, with a large number of
different techniques available in the literature (Hoy et al.
(2015)). One of the most commonly used methods for
robot navigation among obstacles is the Artificial Poten-
tial Functions (APF) approach; it consists in building a
potential field on the workspace where the goal creates an
attractive force and the obstacles create repulsive ones.
A few variations of this approach have been developed in
the literature: e.g., in Kim and Khosla (1992) harmonic
potential functions are used in order to eliminate local
minima, in Huang et al. (2006) artificial potential func-
tions are used for obstacle avoidance of a nonholonomic
vehicle by creating a potential function that affects the
steering rather than the position, and in Guldner et al.
(1995) and Guldner and Utkin (1995) sliding-mode control
is used to follow the gradient of an artificial potential.
However, one of the main limitations of the APF approach
is the existence of local minima, that is, points of the
workspace where the repulsive and attractive forces cancel
out, thereby generating multiple equilibria. In addition to
this, oscillations may appear in the proximity of obstacles
that are close or in narrow passages, thereby causing
collisions or even instability of the system.

Akin to the artificial potential functions, the navigation-
functions (NF) method which was introduced in Rimon
and Koditschek (1992) and further developed in Loizou
(2011) and Loizou (2017), consists in transforming the

workspace in which the robot and the obstacles are re-
duced to points via the so called navigation transfor-
mation. In this new space the control law can be de-
signed as the negative gradient of the navigation function.
Even though this method has been widely studied for the
collision avoidance problem in environments with static
obstacles and mainly in 2-dimensional workspaces, some
extensions to the 3D navigation problem are laid, e.g.,
in Loizou (2012) a navigation transformation is proposed
for a topologically complex 3D workspace and in Roussos
et al. (2008) this method is applied to a 3D nonholonomic
vehicle. The NF-based approach is promising to guarantee
the non-collision with multiple static obstacles, but the
corresponding literature is mostly focused either on linear
(or linearized) robot dynamics models, which are obviously
not realistic let alone for 3D and UAV applications, or in
nonholonomic vehicles with time-varying or discontinuous
control laws. However, the former laws are generally dif-
ficult to design and analyze, while the latter are sensitive
to measurement noise and challenging for stability anal-
ysis. Furthermore, their extension to the case of moving
obstacles is not trivial.

A completely different viewpoint consists in regarding ob-
stacles as state constraints on the robot. In this context,
model predictive control (MPC) has been extremely pop-
ular for the navigation problem in cluttered environments
since it allows to easily encode state and input constraints,
see for example Park et al. (2009); Lee et al. (2011); Marzat
et al. (2017). However, MPC can be computationally costly
when accounting for multiple obstacles and nonlinear dy-



namics, and with unspecified stability margins. In this
paper we use instead a more analytic approach: the so-
called Barrier Lyapunov functions method (Tee et al.
(2008)), to design a controller for autonomous vehicles
evolving in 3D environments containing moving obstacles.
Barrier Lyapunov functions allow to encode the obstacles
as constraints on the system and directly use them as
Lyapunov functions for the design of a stabilizing feed-
back law, thereby guaranteeing that the vehicle does not
penetrate the constrained set and, consequently, ensuring
navigation safety.

The contributions of this paper are twofold: firstly, we
introduce a realistic 3D model based on distances and line-
of-sight angles; it is important to stress that this model
does not belong to the class of nonholonomic systems
studied by Brockett (1983) for which there is an inherent
impediment to design smooth time-invariant controllers.
Then, we design a smooth controller that ensures the stabi-
lization of any point in the valid workspace, that is, the en-
vironment space leaving out the obstacles neighborhoods.
The rest of the paper is organized as follows: in Section
2 the control problem is formulated and our new model
is presented, in Section 3 the feedback control scheme
is presented and analyzed, in Section 4 simulation and
experimental results demonstrating the efficiency of the
proposed method are presented. Finally, some conclusions
and ideas on future research are summarized in Section 5.

2. SYSTEM AND PROBLEM STATEMENT

2.1 3D nonholonomic model

Let us consider a 3-dimensional unmanned aerial vehicle
with Cartesian position determined by the coordinates x,
y, and z. Then, neglecting roll-orientation, the vehicle’s
motion is described by the following equations:

ẋ = v cos θ cosψ (1a)

ẏ = v cos θ sinψ (1b)

ż = −v sin θ (1c)

θ̇ = q (1d)

ψ̇ =
r

cos θ
(1e)

where v is the linear velocity, θ and ψ are the pitch and yaw
angles, and q and r are the associated angular velocities.

The system (1) belongs to the class of driftless systems
that are not stabilizable to a set-point via smooth time-
invariant feedback (Brockett (1983)). This fact adds con-
siderable complexity to the problem of navigation of the
3D nonholonomic vehicles, all the more in the presence of
state constraints, such as those imposed by the presence of
obstacles in the environment. Motivated by this limitation,
we propose an alternative model that is inspired by Aicardi
et al. (1995) where a transformation of a 2D unicycle model
into polar coordinates is used. In 3D, the resulting model,
which is equivalent to (1a)-(1e), is expressed in cylindrical
coordinates with respect to the target point:

ρ̇ = −v cosα cos θ (2a)

β̇ =
v

ρ
sinα cos θ (2b)

ż = −v sin θ (2c)

α̇ =
v

ρ
sinα cos θ − ω1 (2d)

θ̇ = ω2 (2e)

where ρ :=
√

(xg − x)2 + (yg − y)2 is the distance to the
goal position (xg, yg) in the XY plane, α := atan2(yg −
y, xg−x)−ψ is the angle between the robot’s body frame
and the line-of-sight to the the goal in the XY plane,
β := α+ψ is its angular position in the XY plane as seen
from the goal coordinate system, and the angular inputs
defined as ω1 := r/ cos θ and ω2 := q.

The model (2) does not belong to the class of driftless
systems for which, according to Brockett (1983), the origin
cannot be stabilized using smooth time-invariant feedback.
However, the system’s equations are not defined at the
limit point ρ = 0, but this may be handled via feedback.
From a practical viewpoint, a clear advantage of the model
(2) is that it is more suitable for control implementation
since, it is expressed in terms of the most often measured
variables: distances and line-of-sight angles.

2.2 Problem statement

Consider a workspace W ⊂ R3 with m static or moving
obstacles with positions (xoi, yoi, zoi) in the Earth refer-
ence frame and velocities ηoi := [ẋoi, ẏoi, żoi] hence, with
i ≤ m. Let Ri denote the radius of a safety spherical zone
completely covering the ith obstacle. The constrained-
navigation problem consists in designing a control law
that asymptotically steers the vehicle’s posture to a de-
sired configuration while staying away from each obsta-
cle. More precisely, it is required to stabilize the origin
{ρ = β = z = α = θ = 0} while satisfying the constraints
that hi(ρ, β, z) > 0 for all i ≤ m, where

hi(ρ, β, z) :=(ρ cosβ + xoi)
2 + (ρ sinβ + yoi)

2

+ (z − zoi)2 −R2
i .

Remark 1. Note that hi = 0 means that the vehicle is in
contact with the ith obstacle’s safety boundary.

3. CONTROL DESIGN

The navigation controller that we propose primarily relies
on the observation that the system (2) has a natural
cascaded structure: in the equations (2a)–(2c), we may
regard α and θ as virtual control inputs so that, if we define
control laws α∗ and θ∗ that steer ρ, β, and z to the origin,
it would only be left to design the control laws ω1 and ω2

to make α→ α∗ and θ → θ∗. This reasoning is at the basis
of the well-known backstepping control method (Krstić
et al. (1995)) but, while it is intuitively simple, it requires
a careful handling in the realm of nonlinear systems. Here,
we follow the same reasoning used in (Panteley and Loria,
2001, Proof of Lemma 2): for cascaded systems of the form

ẋ1 = f1(t, x1) + g(t, x)x2 (3a)

ẋ2 = f2(t, x2), (3b)



where asymptotic stability of the origin can be demon-
strated by showing the asymptotic stability of the nominal
systems ẋ1 = f1(t, x1) and ẋ2 = f2(t, x2) and boundedness
of the solutions of (3).

Thus, the controller is crafted with the aim at having the
closed-loop system in a cascaded structure, with states

x1 := [ρ, β, z]
>

and x2 :=
[
α̃, θ̃

]>
where α̃ := α − α∗

and θ̃ := θ − θ∗. In these coordinates, the system (2) is
equivalently written as

ρ̇ =− v cosα∗ cos(θ∗)

+ v
[
cosα∗ cos θ∗ − cos(α̃+ α∗) cos(θ̃ + θ∗)

]
(4a)

β̇ =
v

ρ
sinα∗ cos θ∗

+
v

ρ

[
sin(α̃+ α∗) cos(θ̃ + θ∗)− sinα∗ cos θ∗

]
(4b)

ż =− v sin θ∗ + v
[
sin θ∗ − sin(θ̃ + θ∗)

]
(4c)

˙̃α =
v

ρ
sin(α̃+ α∗) cos(θ̃ + θ∗)− ω1 − α̇∗ (5a)

˙̃
θ =ω2 − θ̇∗ (5b)

where α∗ and θ∗ are yet to be defined. Then, for this
system to have a cascaded structure, the controls ω1 and
ω2 are set to

ω1 :=kαα̃+
v

ρ
sin(α̃+ α∗) cos(θ̃ + θ∗)− α̇∗ (6)

ω2 :=− kθ θ̃ + θ̇∗ (7)

where kθ and kα > 0. Indeed, in this case the closed-loop
equations become

ẋ1 =v f1(x1) + v g(x1, x2) (8)

ẋ2 =f2(x2) (9)

where

f1(x1) =

[
− cosα∗ cos(θ∗),

1

ρ
sinα∗ cos θ∗,− sin θ∗

]>
,

(10)

f2(x2) =− k>x2, k := [kα, kθ]
>
, (11)

and

g(x1, x2) =


cosα∗ cos θ∗ − cos(α̃+ α∗) cos(θ̃ + θ∗)

1

ρ

[
sin(α̃+ α∗) cos(θ̃ + θ∗)− sinα∗ cos θ∗

]
sin θ∗ − sin(θ̃ + θ∗)


(12)

As mentioned previously, it must be established that the
respective nominal systems ẋ1 = vf1(x1) and ẋ2 = f2(x2)
are asymptotically stable. For the latter, this is a trivial
task: it may be verified using the function

V2(α̃, θ̃) :=
1

2
α̃2 +

1

2
θ̃2 (13)

whose time derivative along the trajectories of (11), yields

V̇2 = −kαα̃2 − kθ θ̃2, ∀(α̃, θ̃) 6= 0. (14)

For the nominal dynamics ẋ1 = vf1(x1) we use a Lyapunov-
based design with the so-called Barrier Lyapunov function.
For the sake of clarity, we recall the following definition,
taken from Tee et al. (2008).

Definition 1. A Barrier Lyapunov Function is a scalar
function B(x), defined with respect to the system ẋ = f(x)
on an open region D containing the origin, that is con-
tinuous, positive definite, has continuous first-order par-
tial derivatives at every point of D, has the property
B(x) → ∞ as x approaches the boundary of D, and
satisfies B(x(t)) ≤ b for all t ≥ 0 where x(t) corresponds
to the solution of ẋ = f(x) for x(0) ∈ D and some positive
constant b.

To design a barrier Lyapunov function for our system we
use the constraints hi > 0 and define the function

B(ρ, β, z) :=
1

2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)2

(15)

where hoi := x2oi + y2oi + z2oi − R2
i . B(ρ, β, z) satisfies

Definition 1 since it is positive definite for all ρ, β, z such
that hi > 0 and tends to +∞ as any hi(ρ, β, z)→ 0.

Considering the nominal part of subsystem (8), ẋ1 =
v f1(x1), let us define the candidate Lyapunov function

V1(ρ, β, z) := c1
[
ρ2 + β2 + z2

]
+ c2B(ρ, β, z) (16)

with tuning parameters c1, c2 > 0, and defined in the set
D :=

{
(ρ, β, z) ∈ R≥0 × R × R ; i ≤ m : hi(ρ, β, z) > 0

}
.

Let the inputs v, α∗ and θ∗ be defined as

v :=kρv̄ −
1

ζ>f1(x1)

m∑
i=1

ζ>oi

[
ẋoi
ẏoi
żoi

]
(17)

v̄ := tanh(ρ) + tanh(z)2 (18)

α∗ := atan2

(
−∂V1
∂β

,
∂V1
∂ρ

)
(19)

θ∗ := atan2

(
∂V1
∂z

, |ζ̄|
)

(20)

where kρ > 0, ζ̄ :=
[
∂V1

∂ρ ,
∂V1

∂β

]>
, ζ := ∂V1

∂x1
, and

ζoi :=

[
∂V1
∂xoi

,
∂V1
∂yoi

,
∂V1
∂zoi

]>
.

Substituting the inputs (17)-(20) into (10) and knowing
that cos(atan2(y, x)) = x√

x2+y2
and sin(atan2(y, x)) =

y√
x2+y2

we obtain the closed-loop nominal system:

ẋ1 = − v

|ζ|

[
∂V1
∂ρ

,
1

ρ

∂V1
∂β

,
∂V1
∂z

]>
(21)

so the derivative of (16) along (21) yields

V̇1 = vζ>f1(x1) +

m∑
i=1

ζoi

[
ẋoi
ẏoi
żoi

]

= − v̄ ζ
>

|ζ|

[
∂V1
∂ρ

,
1

ρ

∂V1
∂β

,
∂V1
∂z

]>
≤ −kρv̄min

{
1,

1

ρ

}
|ζ|

(22)

that is, V̇1 is negative semidefinite. Indeed, the right-
hand side of (22) vanishes at the destination point
ρ = β = z = 0, as well as at the points where ζ is equal
to zero, where



ζ =



c1ρ− 2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
ρ+ xoi cosβ + yoi sinβ

hi(ρ, β, z)

)
c1β − 2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
ρ(xoi sinβ − yoi cosβ)

hi(ρ, β, z)

)
c1 z + 2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
z − zoi

hi(ρ, β, z)

)


(23)

That is, in general, V1 in (16) may have local minima at
points of the workspace that are away from the destination
point. These may be avoided by properly tuning the
parameter c1 to sufficiently large values with respect to
c2 so that V1 vanishes only at the origin and at finite
number of disjoint unstable equilibrium points, one for
each obstacle. Then V1 has a unique minimum at the
origin and V̇1 is negative everywhere except at the origin
and a countable number of unstable equilibria. Asymptotic
stability of the origin follows.

Remark 2. Note that, in view of (19) and (20), the controls
defined in (6), (7) are equivalent to

ω1 = kαα̃+
v

ρ
sin(α̃+ α∗) cos(θ̃ + θ∗)

− 1

|ζ̄|2

[
∂V1
∂β

d

dt

(
∂V1
∂ρ

)
− ∂V1

∂ρ

d

dt

(
∂V1
∂β

)]
(24)

ω2 = −kθ θ̃ +
1

|ζ|2

[
|ζ̄| d
dt

(
∂V1
∂z

)
− ∂V1

∂z

d|ζ̄|
dt

]
(25)

when ρ 6= 0 and ω1 = ω2 = 0 when ρ = 0.

Now, the main result of this paper can be presented in the
form of the following proposition.

Proposition 1. The error system (8)-(11) in closed-loop
with the feedback law (17), (24), (25) is asymptotically
stable at the origin in D :=

{
(ρ, β, z) ∈ R≥0 × R ×

R ; i ≤ m : hi(ρ, β, z) > 0
}

and solves the safe navigation
problem in a workspaceW with m static/mobile obstacles.

Proof. As explained above, the statement follows the
same reasoning used in (Panteley and Loria, 2001,
Proof of Lemma 2) for cascaded systems of the form (8)-
(11). For such systems, asymptotic stability of the origin
can be demonstrated by showing the asymptotic stability
of the nominal systems ẋ1 = v f1(x1) and ẋ2 = f2(x2)
and boundedness of the solutions of (8)-(11). Asymptotic
stability of the nominal subsystems ẋ1 = v f1(x1) and
ẋ2 = f2(x2) was shown above. Moreover, for the solu-
tions of the latter, we have |x2(t)| ≤ ν(t, t0, x20) where
ν(t, t0, x20) := κ|x2(t0)|e−λ(t−t0).
Now, let us consider the subsystem (8) and the Lyapunov
function (16). The derivative of V1 along the solutions of
(8) with inputs (17)-(20) yields:

V̇1 ≤− kρv̄min

{
1,

1

ρ

}
|ζ|

+

[
kρv̄ +

1

|ζ||f1(x1)|

m∑
i=1

|ζoi||ηoi|

]
|ζ|

 γ1(|x2|)
1

ρ
γ2(|x2|)

|θ̃|


(26)

where we used the fact that g(x1, x2) is Lipschitz –see (12),
and where γ1(s), γ2(s) are proportional to s.

In order to show boundedness of the solutions of (8)
we proceed by contradiction: if |x1| � 1 we have

min
{

1, 1ρ

}
= 1

ρ and v̄ saturates —see (18). Furthermore,

since the term 1
|ζ||f1(x1)|

∑m
i=1 |ζoi||ηoi| is bounded (see

Appendix A) we may rewrite (26) as follows:

V̇1(t, x1) ≤ −kρb1
|ζ|
ρ

+ [kρb2 + b3]
|ζ|
ρ
|x2| (27)

where b1, b2, b3 are positive constants. From (14) we
showed that x2 tends exponentially to zero, therefore the
V̇1 can be bounded as

V̇1(t, x1(t)) ≤ −kρ
ρ
|ζ|
[
b1 − b4ν(t, t0, x20)

]
(28)

where b4 := (kρb2 + b3). From (28) it follows that V̇1 ≤ 0
for sufficiently large t and, since V1 is radially unbounded
with respect to x1, we conclude that the solutions of (8)
are bounded and therefore the origin of system (8)-(11) is
asymptotically stable in D except in a set of measure zero
of unstable equilibria.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1 Simulations

To demonstrate the efficiency of the proposed control law
(17), (24) and (25) for the stabilization of the origin, we
consider a simulation example where a drone evolves in
the presence of three mobile obstacles. In this scenario the
objective is to steer the vehicle from the initial configura-
tion (x(0), y(0), z(0), θ(0), ψ(0)) = (−3,−6,−3, 0, 0) to the
origin avoiding the obstacles in the workspace. Controller
parameters were chosen as kρ = kα = 1, kθ = 3, c1 = 1
and c2 = 0.25. Fig. 1 depicts the simulated workspace
where the obstacles are represented by the colored spheres,
with trajectories in red, and the blue crosses represent the
trajectory described by the robot. The simulation results
are depicted in Fig. 1-Fig. 4. In particular, Fig. 2 shows
the distance between the vehicle and the obstacles for the
duration of the simulation, which leads to conclude that
the UAV successfully avoids the possible collisions in its
path to the goal. Figures 3-4 show the evolution of the state
which asymptotically approaches the origin, in accordance
with the previous analysis.

Fig. 1. Moving obstacles simulation – Vehicle’s motion
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Fig. 2. Moving obstacles simulation – Distance to obstacles
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Fig. 3. Moving obstacles simulation – Cartesian position
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Fig. 4. Moving obstacles simulation – Orientation

4.2 Experimental Results

To further validate our results, some experiments were
performed with one of the drones available at ONERA-
Palaiseau, France. For the setup we used a Parrot
AR.Drone and the Robot Operating System (ROS) inter-
face for the implementation of the control law. An Opti-
track motion capture system based on active IR cameras
and markers was used to obtain the robot configuration at
all time. Furthermore, odometry from the robot’s sensors
and the motion capture system also allowed us to obtain
the linear and angular velocities of the vehicle with a
reduced noise level. Two results are presented; in the
first case (Fig. 5), the goal is to steer the robot to the
final configuration (x, y, z, θ, ψ) = (1.6, 1.7, 1, 0, π/2) and
in the second one (Fig. 7) the vehicle is to arrive to
(x, y, z, θ, ψ) = (2, 2, 1, 0, 0). In both cases the initial con-
figuration is set to (x, y, z, θ, ψ) = (−1.9,−0.48, 0.9, 0, π/2)

Figures 5 and 7 illustrate the workspaces used for the ex-
periments. The blue crosses represent the path performed
by the actual drone. For both cases two virtual mobile
obstacles, represented by colored spheres, with motions
described by a 3-dimensional nonholonomic model as in (1)

were made to follow circular paths (illustrated in red) at
a constant altitude in the path between the drone’s initial
position and the target position; in the first experiment
both obstacles move with a linear velocity of 0.3 m/s and
a yaw rate of 0.65 rad/s; in the second experiment linear
velocity and yaw rate were increased to 0.5 m/s and 1
rad/s respectively. As it may be appreciated from Figures
6 and 8, the distances to the obstacles remain bounded
away from zero implying that the robot successfully nav-
igates through the environment avoiding collisions with
the mobile obstacles, as was expected from the theoretical
results.
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Fig. 5. Experiment 1 – Vehicle’s motion
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Fig. 6. Experiment 1 – Distance to obstacles
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Fig. 7. Experiment 2 – Vehicle’s motion

5. CONCLUSION

We have presented a feedback law for the navigation and
obstacle avoidance of a 3D UAV using the concept of
Barrier Lyapunov functions. This procedure allows us to
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Fig. 8. Experiment 2 – Distance to obstacles

explicitly include the state constraints imposed by the ob-
stacle avoidance requirement into the design of the control
law and at the same time ensure asymptotic stability of
the goal through a classical Lyapunov analysis. Moreover
by transforming the nonholonomic model using cylindrical
coordinates we are able to use a simpler smooth time-
invariant feedback law for the stabilization of the origin.
These results have been validated through simulations and
some experiments. Further research includes the construc-
tion of a tuning-free Lyapunov Barrier function for encod-
ing the state constraints as well as extensive experiments.
Other possible extensions will consider realistic constraints
such as input saturation and field-of-view constraints.
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Appendix A

The explicit expressions of the gradient of V1 with respect
to x1 and with respect to the coordinates of the obstacles,
respectively ζ and ζoi are given in (23) and

ζoi =



2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
xoi
hoi
− ρ cosβ + xoi

hi(ρ, β, z)

)
2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
yoi
hoi
− ρ sinβ + yoi

hi(ρ, β, z)

)
2c2

m∑
i=1

ln

(
hoi

hi(ρ, β, z)

)(
zoi
hoi

+
z − zoi
hi(ρ, β, z)

)


and it can be seen that both functions can be bounded by
expressions of the form∣∣∣∣∂V1∂x1

∣∣∣∣ ≤ k1|x1|+ k2| ln(hi)|∣∣∣∣ ∂V1∂woi

∣∣∣∣ ≤ k′1 + k′2| ln(hi)| woi := xoi, yoi, zoi

and therefore, since |ζ| and |ζoi| are of the same order of
magnitude, |ζoi|/|ζ| can be upper bounded by a constant.
Moreover, since |ηoi| is bounded and, from (28), it follows
that |f1(x1(t))| is bounded, we may conclude that the
expression 1

|ζ||f1(x1)|
∑m
i=1 |ζoi||ηoi| is also upper bounded

by a constant.


