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Abstract— This paper presents a new method to perform
collaborative real-time dense 3D mapping in a distributed
way for a multi-robot system. This method associates a Trun-
cated Signed Distance Function (TSDF) representation with a
manifold structure. Each robot owns a private map which is
composed of a collection of local TSDF sub-maps called patches
that are locally consistent. This private map can be shared to
build a public map collecting all the patches created by the
robots of the fleet. In order to maintain consistency in the
global map, a mechanism of patch alignment and fusion has
been added. This work has been integrated in real-time into a
mapping stack, which can be used for autonomous navigation in
unknown and cluttered environment. Experimental results on
a team of wheeled mobile robots are reported to demonstrate
the practical interest of the proposed system, in particular for
the exploration of unknown areas.

I. INTRODUCTION

Autonomous robot navigation is a complex task that
requires a set of distinct capabilities. Among them, the
construction of a dense map of the environment is partic-
ularly important for safe path planning. Several studies have
demonstrated the ability to make a single robot navigate
autonomously in unknown and congested environments. The
robustness to drift for simultaneous localization and mapping
(SLAM) has also seen a lot of research effort, and several
methods have been developed to ensure the consistency of
the map over time. Although one of the next steps is to
improve the reliability of these approaches, another one is
to scale to multi-robot systems. Indeed, one way to increase
the performances of the system is to use a team of robots
working together (e.g. for coverage or exploration tasks). In
this case, the mapping problem becomes harder since each
robot should build a map from its own measurements, share
this information within the team and fuse information coming
from the other robots. The main challenges are to ensure the
consistency of the map and to build a useful representation
for autonomous navigation with limited computational re-
sources.

We propose a distributed 3D mapping approach combin-
ing a TSDF representation and a manifold map structure
composed of a set of local sub-maps called patches (main
components described in Section III). The mapping system
presented in Section IV includes the simultaneous manage-
ment of private and public maps to deal with the multiple
sources of information. In particular, a strategy to realign and
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(a) Distributed TSDF map reconstructed by the system

(b) Contributions of three robots (different colors) to the global map

Fig. 1: Example of distributed multi-robot TSDF 3D map

fuse patches on the fly is proposed to improve the global
map consistency; this could be used to perform posterior
corrections on the robots’ estimated trajectories. An interface
has also been designed to locally check collisions on request,
which is well suited for path planning with collision avoid-
ance constraints. These features were tested with a team of
wheeled mobile robots equipped with stereo-vision sensors
and real-time processing capabilities, in remote operation and
for autonomous exploration of unknown areas (Section V).

II. RELATED WORK

Environment mapping for robot navigation has been stud-
ied for a few decades and multiple approaches have been
proposed relying on different paradigms. The development
of 3D mapping methods has expanded in the last ten years
thanks to the simultaneous progress in computational ca-
pabilities and availability of 3D sensors. In the following
of 2D Occupancy Grid (OG) maps [1] that have been
widely studied in previous decades, the first significant 3D
modeling approach named Octomap was proposed in [2].
It relies on a 3D occupancy grid with an internal Octree
model. This representation adapts the level of detail of
the map to the environment, which reduces memory usage.
The approach was implemented as an open-source library,
which is particularly optimized to run in real time on CPU.
In addition, since the occupancy grid representation is not
very convenient for path planning algorithms, an Euclidean
Distance Transform (EDT) module has been added [3]. It
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allows to compute the distance to the closest obstacles with
a refresh rate of 1 to 2 Hz on a usual embedded CPU.
Newcombe et al. [4] proposed another 3D reconstruction
method entitled Kinect Fusion. This approach was not di-
rectly intended for robotic navigation. It uses measurements
of a RGB-D sensor to calculate the TSDF (Truncated Signed
Distance Function) [5] over a grid. The main limitation of
this method comes from the need to run on a GPU, so the
volume mapped is limited to a few meters by the available
memory. In [6], the method was improved to map larger
areas thanks to a moving TSDF volume. Areas that fall out
of the volume are exported into a mesh representation and
stored in the system memory. Since the TSDF map is mostly
empty (within usual truncation distances), it was proposed
to allocate voxels on the fly and to access them using a
spatially-hashed index [7]. This method allows to drastically
reduce the memory size occupied by the TSDF and access
time, with limited effects on performances. This idea was
kept in the development of the open-source Chisel library1,
which provides a TSDF approach for 3D reconstruction on-
board of mobile devices [8]. More Recently, Oleynikova et
al. proposed Voxblox [9], a 3D mapping method for robotic
navigation. This method was directly derived from Chisel,
with the addition of an Euclidean distance field estimation
to produce a similar output as Octomap/EDT. An Octree-
based mapping stack that is able to build either a TSDF or a
probabilistic occupancy map has also been presented in [10].
The C-Blox method recently proposed in [11] adapted the
concept of manifold mapping from [12] within the TSDF
framework to obtain a mapping approach robust to localiza-
tion drift. The idea consists in replacing a monolithic map
linked to a single fixed frame by a map splitted into a set
of patches (i.e. local sub-maps).

Compared to the single robot case, the multi-robot case has
been little studied, especially for 3D mapping. Previous work
has mainly focused on matching and merging mono-robot
maps. Such methods have been proposed in [13], [14] using
occupancy grids. In [15], a collaborative mapping approach
has been designed for multiple Micro Aerial Vehicles (MAV)
performing a matching and merging process relying on a
point cloud representation. An important step was achieved
with the work of Howard et al. [12] where the concept of
Manifold Mapping was introduced in 2D. This approach
aims at enhancing map consistency using additional dimen-
sions (e.g. time). The proposed implementation splits the map
into a set of patches (corresponding to the new dimension).
Using this method, the authors were able to successfully
build an OG to map a large environment (up to 600 m2)
using four robots equipped with laser sensors. A 2D multi-
robot SLAM approach built from laser data and relying on
signed distance functions has also been proposed in [16].

We propose a distributed mapping approach for multi-
robot systems based on a structure similar to the one of
C-Blox [11] with a 3D extension of the manifold concept
from [12]. The main objective is to allow several robots to

1https://github.com/personalrobotics/OpenChisel

share patches so as to be able to plan their own trajectory
using information from the rest of the fleet, including align-
ment correction between patches. The focus is put on the
multi-robot mapping system, therefore it is assumed that the
localization of the robots is computed by another algorithm,
e.g. [17], [18] (the latter was used in the experiments). The
other main input of the proposed system is depth information,
which can be retrieved either from stereo-vision, RGB-D or
laser sensors (here, stereo-vision data was processed with
ELAS [19]).

III. MANIFOLD TSDF MAPPING

A. TSDF mapping

The environment is modeled as a truncated signed dis-
tance function (TSDF) [5]. In this representation, space is
discretized using a given resolution into a set of voxels.
Each voxel v observed by a range sensor is updated to
store the signed distance d(v) between the voxel center and
the 3D point measured on the nearest surface. A weight
w(v) is also associated to each voxel in order to fuse
the measurements depending on the sensor precision. A
quadratic-decay method is used to compute the weight, as
in [9]. The distance and the weight of each voxel are updated
with new data as follows: d(v)← d(v) ·w(v) + d · w

w(v) + w

w(v)← w(v) + w
(1)

where d corresponds to the distance value computed for the
voxel v and w is the associated weight. The distance stored
in a voxel is signed: by convention, it is positive if the
voxel is located between the sensor and the surface, and
negative if the voxel is behind the surface. The distance
function is also truncated at a given threshold dmax – if
the distance d measured for a voxel is such that |d| > dmax,
the measurement is not integrated. The implementation used
in this work is based on a spatially-hashed TSDF [7]. In this
case, the whole TSDF grid is not allocated at the beginning.
During the TSDF update process, the system queries the
voxels within truncation distance of the measured surface. If
a voxel has not been allocated yet, a chunk (i.e. a small set of
voxels) is allocated at this location. The chunk is then added
to a list and can be accessed using a key generated with its 3D
coordinates. The signed distance function implicitly defines
the surface as the zero-crossing (also called zero-level-set)
of the function. The marching cubes algorithm [20] is used
to compute the zero-crossing and extract the surface as a
polygonal mesh.

B. Manifold map structure

The manifold map structure introduced in [12] is dedicated
to multi-robot mapping in a 2D space. The manifold is
defined as a continuous 3-dimensional representation of the
map built by a robot, composed of the 2D plane and time.
The time dimension is added to ensure self-consistency and
to allow place revisiting without corrupting the whole map.
Indeed, the same place mapped at two distinct moments will
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not overlap on the manifold. In practice, the manifold is dis-
cretized into successive 2-dimensional patches corresponding
to the fusion of data integrated during a time interval.
We extend this representation in a 3D space to manage a
TSDF-based map. Under the hypothesis that the drift of the
localization algorithm is small, we can consider that data
integrated during a limited time/space window will remain
consistent enough to provide a good local reconstruction.
With this idea in mind, a patch can be seen as a temporal
sub-map with a finite lifetime. During this lifetime, the active
patch will be used to integrate sensor data before being
deactivated, stored and replaced by a new patch. The lifetime
of a patch can be defined as the number of depth maps
integrated in the TSDF, the distance or the angular range
covered by the sensor. A 3D pose (6 DoF) TW←i ∈ SE(3)
is associated to each patch Pi, to define a local coordinate
system with respect to a global reference frameW . This pose
is fixed until the patch becomes inactive and does not receive
data anymore. It can then be moved freely without affecting
the other parts of the map, either to correct an inaccurate pose
estimation, or to change the reference frame of the map.

IV. MAPPING SYSTEM

A. Mono-robot mapping process

At each integration step, range measurements and their
associated pose TW←DM are sent to a Patch Manager which
integrates the information in the corresponding patch. If the
current patch is terminated, a new patch i is created and its
pose TW←i is set to TW←DM . The pose of the measurement
is transformed into the reference frame of the patch as

Ti←DM = (TW←i)
−1 · TW←DM (2)

and the TSDF is updated by projecting the voxels in the depth
map using (1). When a patch reaches the end of its lifetime
and is deactivated, its TSDF is filtered and all voxels with a
weight value under a given threshold are deleted. This filter
aims at discarding artifacts caused by sensor errors, in order
to get the best reconstruction possible and to reduce memory
usage. It is worth noting that during the mapping process,
surface extraction or TSDF interpolation are not required,
which is a key point to ensure real-time performances.

B. Multi-Robot distributed mapping

We take advantage of the manifold representation to
propose a multi-robot distributed mapping system, whose
architecture is depicted in Fig. 2. This system relies on
the exchange of aligned and co-localized patches between
the different robots. The mapping stack is based on two
Patch Managers, one is called public and the other private.
Each Patch Manager stores a set of patches as defined
in Section III-B, using the OpenChisel library to handle
the TSDF part. The private map stores the patches created
by its host robot. The public map is composed of all the
patches created by all the other robots, expressed in the
same reference frame. When a patch is broadcasted by a
robot, each receiving one adds this patch to its public map.
Each patch is identified by a couple (RID, PID), where

Fig. 2: Architecture of the multi-robot mapping system

RID is a unique robot ID and PID is the patch ID, unique
in the robot’s private map. To broadcast the update of a
patch, we serialize only updated voxels of the TSDF. When
deserializing the TSDF, if the couple (RID, PID) already
exists in the public map, the corresponding patch is updated.
This reduces the size of the messages sent over the network
and prevents multiple propagation of the same information.
If for some reason the robots do not share the same reference
frame initially, the alignment process is carried out on the
private patches only. When a common reference frame is set,
all the corrected patches can then be serialized and sent to
the other robots over the fleet network for integration in each
public map.

C. Patch fusion

When revisiting an area that has already been mapped by
the distributed system, the drift accumulated by the external
localization module may yield an inconsistent reconstruction
of the scene. When a patch is terminated, axis-aligned
bounding boxes (AABB) are used to find the patch from
the public map with the most important overlapping area,
then a model-to-model alignment [21] based on the iterative
closest point algorithm [22] is applied to correct the pose
of the aligned patch. Using the public map to find the best
patch means that a robot can apply a correction based on
what the other robots have mapped, thus improving global
consistency. Algorithm 1 summarizes the patch alignment
procedure, which runs in parallel of the mapping process.

To propagate the corrections to further patches, we com-
bine all corrections into a single transformation Tcorr. Before
alignment, each patch is pre-corrected by Tcorr to help the
alignment process to converge. This method only applies pos-
terior corrections to the map, leaving localization unchanged.
Tcorr could also be used in a more integrated SLAM scheme
so as to be consistent with the reconstructed map, e.g. for
obstacle detection and path planning.

Since each patch is expressed in a local reference frame,
an interpolation of the candidate patch is required before
running the fusion process. Indeed, to perform the fusion
of patch Pj into patch Pi, the system has to find the
distance and weight values of Pj at the centers of the voxels
of Pi. These values can then be processed with the standard



Algorithm 1: Patch alignment procedure

Tcorr is initialized to the identity;
foreach new candidate patch Pi do

Correct Pi by Tcorr;
Find the best reference patch Pj with AABB;
Interpolate Pi into Pj ;
Extract the surfaces of each part in the overlapping

area using marching cubes [20];
Compute the correction transform TW←W′ by ICP;
if ICP converges then

Correct Pi by TW←W′ ;
Tcorr ← TW←W′ · Tcorr;
if Pi and Pj have enough overlap then

Fuse Pi into Pj ;

integration model (1). Each voxel center ζii ∈ R3 of Pi

expressed in its own reference frame is projected into the
reference frame of Pj to obtain ζij as follows:[

ζij
1

]
= (TW←j)

−1 · TW←i ·
[
ζii
1

]
(3)

Then the values of distance and weight of ζij in Pj are
computed by trilinear interpolation and integrated into Pi.
Pj is then deleted to limit memory usage. This process can
run in background at a lower frequency: delayed correction
and fusion of the patches do not affect the overall consistency
of the map.

D. Occupancy estimation

In order to be used for obstacle detection and path
planning by each robot, the map should provide information
about occupied and free space. The TSDF can be used to
derive this information and the mapping system exposes a set
of services providing the distance and direction to the closest
object from a given position. An ellipsoidal formulation is
proposed to deal with anisotropic robot characteristics. A
local volumetric treatment is necessary to provide the dis-
tance to the nearest obstacle (equivalent to an EDT [3] or an
ESDF [9]). An AABB is defined around the queried position,
with horizontal semi-axis ddes and vertical semi-axis αzddes,
where ddes is the desired safety distance (robot size with an
additional margin) and αz the ratio between horizontal and
vertical dimensions of the robot. A collision is then reported
if the following Mahalanobis distance condition is met for
at least one voxel:

nobs
T · diag

[
d−2des, d

−2
des, (αzddes)

−2] · nobs ≤ d−2obs (4)

where nobs and dobs are the unit direction and the distance
from the queried position to the closest obstacle, given by
the TSDF within truncation distance (either directly or by
the closest occupied voxel). This procedure was interfaced
with a LazyPRM* planner from the OMPL library [23] and
was able to compute feasible paths within 1 second on the
embedded platforms (see Section V-C). The query process

runs in parallel of the main mapping thread to prevent any
access conflict.

V. EXPERIMENTAL RESULTS

A. Platforms, dataset and map configuration

The proposed mapping system was tested experimen-
tally with a fleet of Wifibot Lab V4 wheeled terrestrial
robots (see left of Fig. 8). They were equipped with Intel
NUC 7 embedded computers and a stereo-rig of baseline
26 cm between two synchronized calibrated cameras (IDS
UL124xLE) providing 640x512 px images at 20 Hz. The
robots were connected together using the 5 Ghz band of a
WiFi router (TP-Link Archer-C7). The same ROS software
stack was run in real time by each robot on its on-board
computer: eVO [18] for visual odometry at 20 Hz (less than
2% drift on the Kitti benchmark) and image rectification,
ELAS [19] for computing dense depth maps at 5 Hz (dis-
tances between 0.5 m and 5 m were taken into account), and
the distributed mapping system which used these inputs. The
TSDF parameters were set to a voxel resolution of 5 cm and
a truncation distance of 50 cm. The creation of new local
patches was triggered by displacement thresholds of 3 m in
translation or 90◦ in rotation. The depth integration takes
about 100 ms per frame and the patch alignment and fusion
takes between 1 and 15 s, but this process is not time critical
and is processed in another thread. To facilitate information
exchange between the robots, the multi-master node manager
system [24] was used. This software shares ROS topics
between different computers, with clock synchronization
from a common NTP reference.

The system was tested under two representative use cases.
In the first one, two robots were remotely operated in a
large SNCF (French National Railway Corporation) storage
area (50 m x 25 m) in Sotteville-Lès-Rouen, France. In the
second case, three robots cooperated in order to realize a
fully autonomous exploration mission in an underground car
park (22 m x 15 m). In this scenario, the mapping stack was
connected to autonomous navigation algorithms achieving
real-time path planning. In order to define a common world
frame shared by all the robots, a vision-based co-localization
method was applied once in each mission. We used a cube
of AprilTag [25] with known relative poses between its
sides (see Fig. 8 bottom right), but any other strategy could
be employed. The robots were co-localized at the start of
the mission in the second use case, while in the first one
this was carried out around the middle of the trajectory. This
demonstrated that the mapping system, which maintains local
patches, can work locally and then reconfigure itself in a
global frame when co-localization is achieved on the fly.

B. Map alignment and cooperative mapping

A single-robot loop was replayed twice to simulate place
revisiting and evaluate the ability of the system to align the
map in order to achieve a consistent fusion. Fig. 4 shows
the reconstruction obtained on the double loop with the
initial trajectory and the one corrected by back-propagating
the map alignment transforms on visual odometry data. As



Fig. 3: Snapshot of Colmap ground-truth reconstruction

shown in Fig. 4, the initial trajectory (in red) suffers from
accumulated drift which can be critical in a narrow zone.
As seen on Fig. 5, a successful alignment between the
patches created during the first loop and the new patches
created during the second loop was achieved. This is used
to correct the pose for the second loop, leading to a more
consistent reconstruction. The drift of the original trajectory
is of about 1 m, and the drift of the corrected trajectory is
reduced to 0.35 m, for a global length of 104 m. A ground-
truth 3D reconstruction of the environment (Fig. 3) was
realized with Colmap [26], a structure from motion software
which operated on a complete set of 1150 images acquired
in high-definition (1280x1024 px) for this purpose. Fig. 6
presents the mapping accuracy compared with the GT using
CloudCompare2. The resulting mean error is about 7 cm.

The distributed multi-robot mapping system was tested in
the same environment. Two robots initially built their own
map in their relative frame, until the co-localization AprilTag
cube was detected around the middle of the trajectories.
Fig. 8 shows the two trajectories. Both robots start from the
top right corner of the zone and perform a loop of about 65 m
length. The initial trajectory of Robot 1 is displayed in black
and its corrected trajectory in blue. The initial trajectory
of Robot 2 is in red and its corrected trajectory in green.
In this example, it can be seen that the alignment module
takes advantage of the patches sent by the other robot, since
significant corrections are applied after the co-localization
event by aligning the reconstruction with the other robot map.

C. Multi-robot autonomous exploration

In the second use case, a fleet of three robots exploited the
obstacle distance service described in Section IV-D to carry
out a fully autonomous exploration. Here, the robots shared a
common AprilTag initial reference frame and then followed
a frontier-based exploration strategy under the constraint of
obstacle avoidance to cover the entire area.3

A dedicated multi-robot system (Fig. 7) has been designed,
with the same suite of distributed algorithms executed on-
board of each robot. The exploration strategy relies on

2CloudCompare: https://www.danielgm.net/cc/
3A video can be found at https://tinyurl.com/CopernicExplo

Fig. 4: Reconstruction and correction of the trajectory of one
robot on a repeated loop over the same area. In red : original
eVO trajectory. In green : corrected trajectory.

(a) (b)

Fig. 5: Detail of a corridor mapped twice sequentially.
(a) Before patch alignment, the corridor is inconsistent due
to localization drift. (b) After patch alignment, the corrected
map is much more consistent.

Fig. 6: Comparison of reconstructed map and GT mesh

the TSDF environment model proposed, which has been
associated to a 3D grid to determine next best views (NBV)
and find a feasible path at the same time. The exchange of
information between robots is managed at the level of each
algorithm and is mostly event-based:

https://www.danielgm.net/cc/
https://tinyurl.com/CopernicExplo
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Fig. 7: Architecture of the multi-robot exploration system

• The local patches of the TSDF map are broadcasted by each
robot to the rest of the team as soon as they are completed
(under distance or orientation conditions).

• The exploration grid is broadcasted by each robot to the
team once a new NBV has been planned.

• The robot current position and predicted trajectory are
exchanged at a fixed high frequency (control loop rate) in
order to be taken into account in planning and control.

A complete communication graph was used during the
experiments, however the architecture is fully distributed
therefore it remains valid if some of the robots cannot
directly exchange information. The only prior information
available is the dimensions of the axis-aligned box to be
covered with respect to an initial global frame. A single
3D grid manages the exploration progress, the computation
of the frontier, the occupancy (in relation with the TSDF
environment model) and the intentions of the robots of the
team for better cooperation. The following four concurrent
tasks are carried out by each robot:
• At a fixed frequency [10 Hz]: Update newly explored cells

in the grid using current pose and sensor geometry.
• When the time tgo to reach the current NBV has elapsed:

Compute a new NBV using Algorithm 2.
• On reception of an exploration grid from another robot:

merge information in its own grid.
• At control rate [20 Hz]: Follow the path to the NBV.
The exploration progress is monitored in 3D space, this
way, it can be used for either 2D or 3D navigation (and
it is thus ready for heterogeneous teams). The evolution of
the exploration is tracked using a 3D dense voxel map that
encodes the status of each cell among the following set of
tags: {Explored, Unexplored, Occupied, Border, Intentions}.
Each voxel stores a status S represented by a 32-bit vector,
where each bit is a flag defined as follows:

bit # 0 [1, 26] [27, 30] 31
Flags Explored Border Robot Intention Occupied

Cells are initially unexplored and are set as explored if they
are located inside the polyhedral model of the embedded
sensor (e.g. a square pyramid) located at the current pose

Algorithm 2: Computation of the NBV

Update obstacles in exploration grid by requests (4);
Compute the new set B of frontier voxels;
foreach Frontier position pi in border set B do

Call Lazy-PRM* to find a path from the current
robot position in free explored space4;

if Feasible path to pi found then
foreach Candidate orientation ψj do

Evaluate utility U of view ξij = [pi, ψj ]
T ;

Set cost C(ξij) as the path length to pi;

Select the NBV ξ∗ in the list of feasible views with (5);
Smooth the path corresponding to this NBV and send it
to trajectory tracking;

Clean the old and set the new self-intentions in 3D grid;
Share 3D grid with the other robots;

of the robot. The exploration utility is computed with the
exact same function at a given candidate view, and is equal
to the number of unexplored voxels that can be observed
(considering the intentions of the other robots as already
explored). The border set (i.e. the free cells that are located
at the border of any unexplored cell) is managed by updating
the 26 neighbours (in 3D) of a cell when it becomes explored.
Each time a NBV is computed, the intention bit fields
corresponding to the current robot are updated and the grid
is broadcasted to the other robots of the team.

The exploration strategy is frontier-based [27], and the
following cost function is considered to choose the NBV:

J(ξ) = U(ξ) exp(−βC(ξ)) (5)

where ξ = [x, y, z, ψ] is a view on the exploration frontier
comprising a 3D position and a yaw in inertial frame, U
the utility or gain, C the cost and β a weighting coefficient.
This cost function, initially defined in [28], achieves a
trade-off between the utility of the view (here, the new
volume seen given the sensor model and the intentions of
the other robots) and the cost to reach this location (here,
the distance to reach the view given the obstacle map). The
cost to each border voxel is evaluated using the Lazy-PRM*
path planning algorithm [29]. By construction, this strategy
is efficient for multi-query requests using a single graph,
therefore it is better suited for the frontier-based approach
considered (which can be seen as a single-start multiple-
goals problem), than e.g. its RRT* counterpart [30]. The
any-time characteristics and the low computational cost of
Lazy-PRM* are also relevant, since we want to check the
feasibility and compare the path lengths towards all the
border nodes within a limited computation time. A unique
PRM graph is thus generated in the position space (2D
at the current altitude for a mobile robot in this work,
but the 3D case for aerial vehicles can also been taken
into account), and multiple queries are performed from

4Lazy-PRM* is granted 1 s for the first frontier point (when the graph is
built), then 1 ms for the remaining ones



the start location (current robot position) to all the current
candidate border points (Fig. 9a). The planner thus returns
the feasibility to find a path toward each border point ξi
and for the feasible ones, the length of the path is taken as
cost value C(ξi). The collision checks are performed from
the states of the exploration grid, a position is considered
feasible if it lies in a non-occupied explored voxel. This
ensures a safe navigation, in the spirit of the frontier-based
approach where the robot navigates only in the known
free space. The current positions of the other robots of
the team are also taken into account in collision checking.
The current intentions of the other robots are considered
as already explored by the robot computing its NBV
(Fig. 9b). For each reachable cell of the border determined
as described above, a discretized number of candidate
orientations are evaluated (8 yaws ψ in our tests). Following
these discretized evaluations of distance cost and utility, the
pose ξ∗ containing the coordinates of the border cell and
the orientation which maximizes the cost function (5) is
selected as the NBV to be reached. The path from the start
to this position is smoothed using B-splines to better respect
motion constraints, and sent to a robot trajectory tracking
controller (derived from [31]). This way, the trajectory to be
followed (with a reference speed chosen equal to 0.4 m/s) is
consistent with the current state of the exploration grid.

Five experiments were performed for the case of a
single robot (to serve as a baseline), and then for teams
of two and three robots, with randomized initial positions.
The mission was stopped when the volume coverage
reached 90%. The metrics computed are those reported in
previous works: evolution of the coverage with time and
distance covered by each robot. The performances and
gains (around 1.5 for each new robot added to the team)
reported in Table I compare favourably with those reported
in real experiments (in 2D with laser scanners [32]) or
in simulation [33]. This confirms the applicability and
relevance of this distributed multi-robot vision-based system
with the proposed TSDF model in the loop. Fig. 1 shows
the mesh reconstructed by the TSDF and in particular the
respective contribution of each robot to the shared global
map, which was reconstructed by each of them on its own
embedded computer (nothing was processed on a ground
station). The cooperation strategy allowed the robots to
share the task of information gathering, and the mapping
system thus allowed them to plan their own path using
locations previously covered by the other robots. Fig. 11
presents the equivalent occupancy grid (with safety margins
for autonomous navigation) generated by querying the
TSDF map over a 20 cm resolution grid, and an example
of planned trajectory avoiding several obstacles. Fig. 10
presents the supervision view of the exploration mission.

VI. CONCLUSIONS

This paper has described a multi-robot distributed 3D
TSDF mapping approach based on a manifold structure and
a representation as a collection of local patches. It contains

Fig. 8: Global reconstruction of the same zone mapped in
parallel by two robots (Wifibot Lab V4, on the left)

(a) Lazy-PRM* path generation (red)
towards all border cells through
explored space (green), unexplored
space in blue.

(b) NBV intentions of robots
2 and 3 (blue and yellow) re-
ceived by robot 1 (red).
Explored space in green.

Fig. 9: Exploration grid: planning and intentions

TABLE I: Metrics and gains w.r.t. 1-robot baseline
(Averaged over five experiments)

Time (s) to
cover 90%

Gain w.r.t.
1 robot

Distance (m)
per robot

Gain w.r.t.
1 robot

1 robot 281.11 1 77.53 1

2 robots 168.59 1.67 48.95 1.58

3 robots 129.25 2.17 33.92 2.29

Fig. 10: TSDF environment model built on-board during
exploration. Embedded camera views on the right side.

a patch-to-patch alignment strategy coupled with a fusion
algorithm, which are able to improve the consistency of the
map and can also be used to carry out posterior corrections
on the localization of the robots. The distributed nature of



(a) Mesh and occupancy map inferred by local TSDF queries

(b) Example of collision-free path (in red) generated using the
proposed mapping system

Fig. 11: TSDF map for autonomous robot navigation

the system is provided by the management – at the level of
each robot – of a private map where the patches are created
using depth information from the embedded sensors, and a
public map where all the patches received from the other
robots are integrated. Experiments conducted with a fleet of
wheeled terrestrial robots successfully validated the abilities
to perform map correction and also interact with planning
algorithms for autonomous navigation and exploration in
areas mapped cooperatively. Future work will consider the
integration of additional sensors (RGB-D, laser) and field
tests in larger areas with heterogeneous fleets comprising
terrestrial and aerial robots.
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