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Abstract: We address the consensus problem with connectivity maintenance for networks of
multi-agent systems interconnected over directed spanning tree graphs in the edge-agreement
space and, for the first time in the literature, we provide a strict Lyapunov function. The
importance of this contribution is that it allows to establish uniform global asymptotic stability
of the consensus manifold for a multi-agent system subject to proximity constraints. Moreover,
robustness in the sense of input-to-state stability with respect to external disturbances is
also established. These properties have not been established before when dealing with state-
dependent constraints, even for a class of directed graphs, because most often in the literature
only non-uniform convergence to the consensus manifold is established.
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1. INTRODUCTION

In recent years, distributed control of multi-agent sys-
tems has been extensively studied, since it offers consider-
able advantages over its centralized counterpart, such as
versatility, robustness and less computational power. Of
particular interest for multi-agent systems, the consensus
problem, under a classical node-based graph representa-
tion, has been thoroughly studied for many years now.
As it is well-known, for undirected graphs, consensus is
achieved if and only if the graph is connected (there exists
a path connecting every agent in the network); for directed
graphs, the existence of a rooted directed spanning tree is
necessary and sufficient (Ren et al. (2005)). Yet, although
necessary for consensus, assuming connectivity may not
be realistic in concrete applications. For instance, those
involving autonomous multiagent cooperative systems, in
which case the exchange of information between one sys-
tem and its neighbours can be ensured only if the latter
lie in ”close” proximity. Therefore, connectivity is a con-
straint that must be established and not accounted for.

Several articles have addressed the connectivity mainte-
nance problem. For undirected graphs, in Ji and Egerstedt
(2007) an “edge-tension” function is proposed in order
to guarantee consensus while preserving connectivity. Fol-
lowing the latter reference, in Dimarogonas and Kyri-
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akopoulos (2008) and Boskos and Dimarogonas (2017) a
general framework is developed using barrier functions,
which encode the proximity constraints, over static and
dynamic graphs; robustness with respect to additional
bounded inputs is also established. For multiagent sys-
tems over directed graphs (digraphs), however, there are
far fewer works addressing the problem of connectivity
maintenance. In Sabattini et al. (2013), Poonawala and
Spong (2017), Sabattini et al. (2015), and Cai et al. (2017)
some consensus control laws derived as the gradient of bar-
rier functions, are proposed, albeit for strongly connected
digraphs. The methods proposed in these references, how-
ever, rely on the knowledge of the algebraic connectivity of
the graph, which is a global parameter. Therefore, in order
to apply a distributed control law it is required to estimate
the algebraic connectivity. In Mukherjee et al. (2017), a
control law is proposed to preserve local connectivity in a
digraph, although only connectivity maintenance and not
consensus is shown and estimation of the eigenvalues of
the Laplacian matrix is also needed.

Now, from an analytic viewpoint, it is important to stress
that the agreement problem has been mainly studied from
the node perspective, according to which the properties
of the resulting Laplacian matrix are fundamental to
establish consensus relying, essentially, on linear algebra.
This is in clear contrast with methods that focus on the
study of consensus from a stability perspective. According
to the latter, the system’s states represent the difference
among the states’ values of the nodes, rather than the



nodes themselves, so consensus is reformulated as the
stabilisation of a set (Panteley and Loŕıa (2017)) or, more
particularly, of the origin. Not relying on methods tailored
for the analysis of linear invariant systems, paves the way
to important relaxations, such as considering time-varying
interconnections in directed spanning trees (Maghenem
and Loŕıa (2017)) or nonlinear interconnections, as in
the case of connectivity-preserving consensus algorithms
(Dimarogonas and Kyriakopoulos (2008); Poonawala and
Spong (2017); Sabattini et al. (2015)), as studied herein.

More specifically in this paper, in order to analyse the
consensus problem from a stability perspective, we rely on
the so-called edge-agreement representation Zelazo et al.
(2007) —see also Alvarez-Jarqúın and Loŕıa (2014). This
framework has been shown to offer some analysis advan-
tages over the node perspective. In Zeng et al. (2014)
and Zeng et al. (2017), respectively for nonlinear sys-
tems and systems with quantised information exchange,
consensus over a digraph is guaranteed by establishing
asymptotic stability of the agreement manifold by means
of a strict Lyapunov function. The importance of the latter
can hardly be overestimated. For instance, in Mukherjee
and Zelazo (2018) it allows to assert the robustness of
the consensus protocol for a network of second-order sys-
tems. In none of these works, however, the connectivity-
maintenance problem is addressed; the interconnections
are linear time-invariant (except for Alvarez-Jarqúın and
Loŕıa (2014)), which greatly facilitates the construction of
the Lyapunov function.

Hence, in this paper we address the agreement control
problem, with connectivity maintenance, for a network
of first-order systems over directed spanning trees with
proximity constraints. Our contribution is twofold; first,
using a barrier function we construct a strict Lyapunov
function. This allows us to establish uniform global asymp-
totic stability of the consensus manifold for the closed-
loop system as well as connectivity maintenance. Secondly,
we demonstrate via the proposed strict Lyapunov func-
tion that the system is input-to-state stable with respect
to external disturbances. To the best of our knowledge,
although strict Lyapunov functions have been proposed,
even for edge-based graphs, this is done without addressing
connectivity maintenance. As a matter of fact, the latter
has been addressed mostly under the node-perspective
and, even though in some works Lyapunov’s method is
used, this is done via non-strict Lyapunov functions, which
lead to weak properties such as mere convergence.

The rest of the paper is organised as follows. In Section
2 we present some preliminaries on edge-based graph
theory and state the control problem; our main results
are presented in Section 3, illustrated through simulations
in Section 4. We conclude some remarks in Section 5.

2. MODEL AND PROBLEM FORMULATION

2.1 Notations and preliminaries

Let G = (V, E ,W) be a weighted digraph defined by a
vertex (node) set V = {1, 2, . . . , n}, corresponding to the
nodes’ states, and an edge set E ⊆ V2 characterising the
network communication topology. Throughout this paper
it is assumed that the cardinality of V equals n and that of

E equals m. W ∈ Rm×m is a diagonal matrix with strictly
positive entries which represent the weights of the edges of
the graph. A directed edge ek is an ordered pair (i, j) ∈ E
if and only if there exists a connection that starts at node
i and ends at node j, where i, j ∈ V. A directed path
in a digraph is an ordered sequence of directed edges. A
directed tree is a subgraph in which every node has exactly
one parent except for the root node, which has no parent,
but has a path to every other node. A spanning tree is a
tree subgraph containing all nodes in V.

The interconnection topology of a digraph may be de-
scribed using the so-called incidence matrix, E(G) ∈
Rn×m, which has n rows indexed according to the nodes
and m columns indexed according to the edges. Its ele-
ments are defined as

[E]ik :=


−1 if i is the terminal node of edge ek

1 if i is the initial node of edge ek
0 otherwise.

Moreover, for the purpose of analysis, it is useful to
partition the incidence matrix as

E = E� + E⊗ (1)

where E�(G) ∈ Rn×m corresponds to the so-called in-
incidence matrix, whose elements are defined as —cf. Zeng
et al. (2014),

[E�]ik :=

{
−1 if i is the terminal node of edge ek

0 otherwise

and E⊗(G) ∈ Rn×m corresponds to the so-called out-
incidence matrix, whose elements are defined as

[E⊗]ik :=

{
1 if i is the initial node of edge ek
0 otherwise.

Then, the weighted Laplacian matrix L(G) ∈ Rn×n of a
digraph G can be defined in terms of the incidence and
in-incidence matrices as

L(G) = E�(G)WE(G)>. (2)

For digraphs, L(G) has a simple zero eigenvalue and
all other non-zero eigenvalues are in the open left-half
complex plane, if and only if the digraph contains a
spanning tree (Ren et al. (2005)). In what follows, the
argument G is dropped for brevity.

2.2 Directed Edge Laplacian and Reduced Order System

In Ren et al. (2005) it is shown that a multiagent system
communicating through a directed graph achieves consen-
sus if and only if the graph contains a directed spanning
tree. This suggests that when addressing a consensus prob-
lem for a digraph, the effort may be concentrated on an
existing rooted directed spanning tree that is a subgraph
of G. Actually, given an appropriate labelling of the edges
(Mukherjee and Zelazo (2018)), it is possible to express
the incidence matrix as

E = [ Et Ec ] (3)

where Et ∈ Rn×(n−1) denotes the incidence matrix cor-
responding to an arbitrary spanning tree GT ⊂ G and
Ec ∈ Rn×(m−n+1) represents the incidence matrix corre-
sponding to the remaining edges not contained in GT . The
labelling is as follows: let the root node be labelled ”1”



and let the remaining nodes be labelled as follows. Any
two nodes i and j belonging to a branch bl of the tree are
labelled such that if the path length from the root to i
is shorter than the path length from the root to j, then
i < j. Then, label the n − 1 edges such that for any edge
ek = (i, j), that is, with terminal node j, one has j > k.

Furthermore, in Mukherjee and Zelazo (2018), it is shown
that there exists a linear transformation between the edges
of the spanning tree GT and the remaining cycles, that is

EtT = Ec (4)

where T :=
(
E>t Et

)−1
E>t Ec. Thus, defining

R := [ I T ] (5)

with I denoting the identity matrix of adequate dimension,
one obtains an alternative representation of the incidence
matrix of the digraph that is given by

E = EtR. (6)

Remark 1. The in-incidence and out-incidence matrices
also admit a decomposition as in (3), i.e., defining E�t
and E⊗t ∈ Rn×(n−1) as the in-incidence and out-incidence
matrices of a directed spanning tree GT ⊂ G and E�c
and E⊗c ∈ Rn×(m−n+1) as the in-incidence and out-
incidence matrices of the remaining edges in G, we have
E� = [E�t E�c] and E⊗ = [E⊗t E⊗c]. •

The identity (6) is useful to derive a dynamic model for
the spanning-tree GT ⊂ G, as we show next.

Let us consider the classic weighted consensus protocol
(Ren et al. (2005)) for n first-order systems,

ẋi = ui, xi ∈ RN , i ≤ n (7)

where ui ∈ RN corresponds to the control input for each
agent. In compact form, the systems’ states are collected in

the vector x =
[
x>1 , . . . , x

>
n

]> ∈ RnN and the control input

is u =
[
u>1 , . . . , u

>
n

]> ∈ RnN . Then, denoting by IN the
N × N identity matrix, in compact form, the networked
systems’ nodes dynamics is

ẋ = −[L⊗ IN ]x, x ∈ RnN , L ∈ Rn×n. (8)

However, following Zelazo et al. (2007) we introduce the
following coordinate transformation, mapping the nodes’
space to that of the edges,

z := [E> ⊗ IN ]x, z := [z>1 · · · z>k · · · z>m]>. (9)

That is, for each pair of nodes with states xi and xj ∈ V,
the state zk ∈ RN , with k ≤ m, denotes the state of
the k-th arc, interconnecting xi and xj . In other words,
zk := xi − xj where i, j ∈ V and k ≤ m. Therefore, from
(9), it is clear that the agreement condition, {xi = xj ,
∀ (i, j) ∈ V2}, is equivalent to {z = 0}. This is significant
because in the edge-variables’ representation, consensus
may be reformulated as a stabilisation problem of the
origin for the system

ż = −[E>E�W ⊗ IN ]z, (10)

which is obtained by differentiating both sides of (9)
and using (2) and (8). This leads to the so-called edge
Laplacian matrix Le(G) ∈ Rm×m,

Le := E>E�W (11)

which lies at the basis of the edge-representation frame-
work. The matrix Le is an edge-variant of the graph

Laplacian and, as such, it has the property of having the
same non-zero eigenvalues as the graph Laplacian L, and
rank(Le) = rank(L) = n−1 —see, e.g., Zeng et al. (2014).

Consensus (hence stability of the origin for (10)) holds if
and only if there exists a directed spanning tree GT ⊆ G.
This suggests that the control design and analysis prob-
lems for (10) may be simplified by making a distinction
between the state variables corresponding to the edges in
an arbitrary directed spanning tree GT , that we denote zt
and the remaining edges, that we denote zc. That is, as in
Mukherjee and Zelazo (2018), we split the edges’ states as

z =
[
z>t z>c

]>
, zt ∈ Rn−1, zc ∈ Rm−n+1. (12)

Then, we replace the latter expression of z in (the first
equation in) (9) and compare it to (12) to obtain

zt :=
[
E>t ⊗ IN

]
x. (13)

Furthermore, after (4) it is readily seen that the states of
the arcs not contained in the tree GT , zc, satisfy

zc =
[
T> ⊗ IN

]
zt. (14)

Other identity is obtained from (5) and (14); we have

z =
[
R> ⊗ IN

]
zt (15)

which, together with (6) and (10), implies that

żt = −
[
E>t E�WR> ⊗ IN

]
zt. (16)

The latter equation has the advantage of having a reduced
dimension with respect to (10) and, yet, in view of (14), it
still captures the behaviour of the overall network. Thus,
consensus is achieved if the origin for (10), or equivalently
for (16), is asymptotically stable. The consensus problem
for the system (16), with the weight matrix W = Im and
with linear interconnections, has been widely studied in
the literature, including using Lyapunov’s direct method
—see Mukherjee and Zelazo (2018); Zeng et al. (2014).

In addition to consensus, the objective is to respect some
proximity constraints that guarantee a reliable communi-
cation between any pair of nodes. This is defined as follows.

Definition 1. (Connectivity maintenance). For each k ≤
m, let ∆k > 0 denote the maximal distance between the
nodes i and j such that the communication between them,
through the arc ek = (i, j), is reliable. We say that the
graph connectivity is maintained (hence, the proximity
constraint holds) if the set

J :=
{
z ∈ RmN : |zk| < ∆k, ∀ k ≤ m

}
, (17)

where zk = xi − xj , is forward invariant. That is, if
|zk(0)| < ∆k implies that z(t) ∈ J for all t ≥ 0.

The design of the controller that we employ is based on so-
called barrier Lyapunov functions; this leads to a nonlinear
gradient-based control law. In other words, the closed-loop
system is of the form (16), but with nonlinear interconnec-
tions that we refer to as a connectivity potential.

Definition 2. (Connectivity potential). Let p0 ∈ R and,
for each k ≤ m, let B∆k

:= {zk ∈ RN : |zk| < ∆k},
αk :

[
0,∆2

k

)
→ R≥0, s 7→ αk(s), be of class C1 on

[
0,∆2

k

)
and pk : B∆k

→ R>0 be a continuous function such that

• pk(zk) :=
∂αk

∂s
(|zk|2) ≥ p0 > 0, for all |zk| < ∆k,

• αk(s)→∞ as s→ ∆2
k, so pk(zk)→∞ as |zk| → ∆k

Then, the connectivity potential P (z) is a positive-definite
matrix defined as P (z) := diag

[
pk(zk)

]
∈ Rm×m.



Then, the Barrier function Uk : B∆k
→ R≥0 is defined as

Uk(zk) := αk(|zk|2). (18)

Barrier functions are reminiscent of Lyapunov functions;
as such, they have the property of being positive definite
and radially unbounded, but Uk(zk) grows unboundedly
as zk approaches the border of an open set. Note that a
connectivity potential may be regarded as the gradient of
a barrier function, in the sense that

∂Uk

∂zk
= 2pk(zk)zk, ∀ k ≤ m. (19)

Remark 2. For examples of Barrier functions satisfying
the previous definition (albeit taking values in the nodes
space), see the so-called “edge tension” function in Ji and
Egerstedt (2007) and Boskos and Dimarogonas (2017).
The Barrier Lyapunov Functions from Tang et al. (2013)
and references therein constitute other examples. •

In the sequel, we present distributed control laws that solve
the consensus-with-connectivity-maintenance problem for
a directed spanning-tree, as well as the proposed strict
Lyapunov functions.

3. MAIN RESULTS

3.1 Consensus with preserved connectivity

Consider a network of n dynamical systems (7) inter-
connected through a directed spanning tree graph GT .
Because the graph is cycle-free, in the edge-coordinates
representation, we have z = zt, E = Et, and

żt =
[
E>t ⊗ IN

]
u. (20)

Based on the barrier functions Uk the control law is defined
as the gradient control law

u(zt) = −c
[
E�tP (zt)⊗ IN

]
zt, (21)

where c > 0 is the network’s connectivity strength —
cf. Panteley and Loŕıa (2017), and the matrix P (zt) :=
diag

[
pk(zk)

]
models the interconnections —see Definition

2. Hereafter, it is assumed without loss of generality that
the weights matrix W = Im.

We emphasise that each component of u depends only on
local information since E�t represents the incoming edges
on each node, that is, the available information to each
agent as defined by the digraph.

Proposition 1. Consider n systems as in (7) interconnected
through a directed spanning tree GT with proximity con-
straints. Then, the control law (21) guarantees that zk → 0
for all k ≤ m and the set J , defined in (17), is forward
invariant for the closed-loop trajectories. Furthermore the
function

V (zt) =
∑

k≤n−1

γkUk(zk), (22)

where γk > 0 are design parameters and the functions Uk

are defined in (18), is a strict Lyapunov function for system
(20) with input (21).

Proof. First, we derive the closed-loop equation. To that
end, we replace (21) into (20) and, akin to (11) albeit with
an abuse of notation, we define the edge-Laplacian matrix
Let ∈ Rn−1 × Rn−1 as Let := E>t E�tIn−1. We obtain

żt = −c
[
LetP (zt)⊗ IN

]
zt. (23)

Next, we differentiate the function V along the trajectories
of (23). We use (19) and define Γ ∈ R(n−1)×(n−1), Γ :=
diag [γk] with γk > 0 yet to be determined, to obtain

∂V (zt)

∂zt
= 2

[
P (zt)Γ⊗ IN

]
zt (24)

and, in turn,

V̇ (zt) = −2c z>t
[
P (zt)ΓLetP (zt)⊗ IN

]
zt

= −c z>t
[
P (zt)

(
ΓLet + L>etΓ

)
P (zt)⊗ IN

]
zt.

On the other hand, the right hand side of the previous
equality is negative definite if E� is constructed by ap-
plying the labelling approach described earlier, but on the
in-incidence matrix. Indeed, in this case, we have

E�t =

[
01×(n−1)

−In−1

]
. (25)

Now, using the fact that Et = E�t + E⊗t, the directed
spanning-tree edge Laplacian satisfies

Let = E>t E�t = E>�tE�t + E>⊗tE�t =: I −B (26)

where we defined B := −E>⊗tE�t and we used (25) to show

that E>�tE�t = I. Furthermore, since having [E⊗t]ij = 1
implies [E�t]ij = 0 and, in view of the previous labelling,
[E>⊗t]ij = 0 for i < j, it follows that B is lower triangular
matrix with zero diagonal and all other elements either
equal to 0 or 1. Moreover, for a directed spanning tree, all
the eigenvalues of Let lie on the open left-hand complex
plane and rank(Let) = n − 1; indeed, they coincide with
the eigenvalues of the graph’s Laplacian L. Thus, from the
latter and (26), we conclude that Let is a non-singular M -
matrix (Plemmons (1977)), that is, a real matrix with non-
positive off-diagonal elements and eigenvalues with strictly
positive real parts. Now, after Plemmons (1977), every
non-singular M -matrix is diagonally stable, that is, for any
Q = Q> > 0, Let admits a diagonal solution Γ :=diag

[
γk
]
,

to the Lyapunov inequality

ΓLet + L>etΓ ≥ Q > 0. (27)

Choosing γk in (22) so that (27) holds, and since P (zt) > 0,
we have

V̇ (zt) ≤ −c z>t
[
P (zt)QP (zt)⊗ IN

]
zt, ∀ zt ∈ R(n−1)N

≤ −c λmin(Q)
∣∣[P (zt)⊗ IN

]
zt
∣∣2 < 0, ∀zt 6= 0,(28)

where λmin(Q) is the smallest eigenvalue of Q. Thus, V in
(22) is a strict Lyapunov function for (23).

Now we show that J is forward invariant along closed-
loop solutions. We proceed by contradiction. Suppose that
there exists T > 0 such that for all t ∈ [0, T ), zt(t) ∈ J
and zt(T ) /∈ J . That is, we have |zk(t)| → ∆k as t → T
for at least one k ≤ n− 1. Then, by definition, we have
V (zt(t))→∞ as t→ T . This, however, is in contradiction
with (28), which implies that V (zt(t)) ≤ V (zt(0)) <∞ for
all t ≥ 0. Connectivity maintenance follows.

Now, define the set Jε := {zt ∈ R(n−1)N : |zk| < ∆k −
ε, ∀ k ≤ n− 1} and its closure J̄ε, where ε > 0 is an
arbitrarily small constant. We see that V (zt) is positive
definite for all zt ∈ J̄ε and can be bounded as

β|zt|2 ≤ V (zt) ≤ h(|zt|) (29)

where β is a positive constant and h( · ) is a positive strictly
increasing function defined everywhere in J̄ε and h(0) = 0.



This means that V (zt) → 0 as zt → 0. Therefore, from
(28) and standard Lyapunov theory it follows that for all
trajectories of the closed-loop system starting in Jε, the
origin is attractive for all zk(0) ∈ Jε (and all k ≤ n − 1).
Taking the limit ε → 0, asymptotic stability of the origin
for all trajectories starting in J follows. Thus, consensus
is achieved and the proximity constraints are satisfied. �

3.2 Robustness of the spanning-tree topology

Consider now systems with an additive bounded distur-
bance, that is,

ẋi = ui + di, xi ∈ RN . (30)

For this system we have the following.

Proposition 2. The multiagent system (30), with a com-
munication topology defined by a directed spanning tree
GT and under proximity constraints, in closed loop with
the controller (21) is input-to-state stable with respect to

disturbance d :=
[
d>1 · · · d>n

]> ∈ RnN . Furthermore, the
digraph remains connected in the presence of bounded d.

Proof. Applying the edge transformation (13) and the
control (21), we obtain the closed-loop equation –cf. (23)

żt = −c
[
E>t E�tP (zt)⊗ IN

]
zt +

[
E>t ⊗ IN

]
d. (31)

Consider again the Lyapunov function zt 7→ V (zt) as in
(22); using (28), we obtain that its total derivative along
the trajectories of (31) satisfies

V̇ (zt) ≤ −c′
∣∣[P (zt)⊗ IN

]
zt
∣∣2 + 2z>t

[
P (zt)ΓE

>
t ⊗ IN

]
d

where c′ := cλmin(Q). Now, given c, Q, and Γ, let δ > 0
be such that

c′ := c λmin(Q)− 1

δ
λmax(ΓE>t EtΓ) > 0.

It follows from Young’s inequality that

V̇ (zt) ≤− c′
∣∣[P (zt)⊗ IN

]
zt
∣∣2 + δ|d|2 (32)

and from the latter and P (zt) ≥ p0 —see Definition 2, we
have

V̇ (zt) ≤ −c′p2
0|zt|2 + δ|d|2, (33)

so the system (31) is input-to-state stable.

To assert connectivity maintenance in presence of additive
disturbances it suffices to show that in the proximity of the
limits of the connectivity region, that is, as |zk| → ∆k for
any k ≤ m, the first term on the right-hand side of (32)
dominates over the second term. Let ε > 0 be arbitrarily
fixed and let zt ∈ Rn−1 be such that, for some k ≤ m we
have |zk| ≥ (∆k − ε). Then, |zt| ≥ (∆k − ε) and it follows
from (32) that

V̇ (zt) ≤ −c′|P (zt)|2(∆k − ε)2 + δ|d|2, (34)

which, from |P (zt)| ≥ pk((∆k − ε)2), implies that

V̇ (zt) ≤ −c′pk((∆k − ε)2)2(∆k − ε)2 + δ|d|2.
The previous reasoning holds for any zk arbitrarily close
to the boundary ∆k, that is, for arbitrarily small ε.
Furthermore, since pk(s)→∞ as s→ ∆2

k, then |P (zt)| →
∞ as ε → 0. It follows that V̇ (zt) ≤ 0 for sufficiently
small ε > 0. The proof of connectivity maintenance follows
similar arguments as in the proof of Proposition 1. �

4. SIMULATION RESULTS

In this section, we present simulation results that demon-
strate the performance of the connectivity-preserving con-
sensus algorithm analysed above. We considered a system
composed of six agents, whose communication topology is
given by the spanning tree digraph in Figure 1.

E�t =

[
01×(n−1)

−In−1

]

Fig. 1. Directed spanning tree for 6 agents

For the simulations, we considered each agent to be de-
scribed by a single integrator system subject to a vanishing
perturbation —see (30). The perturbations were modelled

as di(t) = d̄i(t) [1 1]
>

, with

d̄i(t) =


−2.4(tanh(2(t− 15))− 1) +

1

(t+ 10)
, i = {3, 5}

2.4(tanh(2(t− 15))− 1) +
1

(t+ 10)
, i = {2}

0, i = {1, 4, 6}.
(35)

The input perturbation is set to take its maximal value at
t = 0, since, for the considered simulation, the agents are
closest to the boundaries of the proximity regions at t = 0.

Furthermore, two scenarii were considered. For the first
scenario, we used the gradient control law proposed in (21),
where the barrier function was defined as

Uk(zk) = |zk|2 + ln

(
∆2

k

∆2
k − |zk|2

)
(36)

and we set c = 2 and γk = 1, for all k ≤ 5. Hence, the
expression for each ui is as follows:

ui = −2
∑
k≤m

[E�]ik

(
1 +

1

∆2
k − |zk|2

)
zk. (37)

For the second scenario, we used the edge-based consensus
algorithm without connectivity maintenance proposed in
Mukherjee and Zelazo (2018), of the form

ui = −2
∑
k≤m

[E�]ikzk. (38)

For both scenarios, the initial conditions for the agents
were set to x1(0) = [2.4, 0], x2(0) = [−0.58, −0.9],
x3(0) = [4.5, 2], x4(0) = [5, −2], x5(0) = [−4.2, −0.45],
and x6(0) = [−2, −4.2] and the radii of the connectivity
regions were assumed to be ∆ = [2.5, 3.2, 3.3, 3.9, 3.7, 4].
In Figure 2 we show the evolution of the edge states for
the system with the proposed controller (37). It is clear
from the Figure that once the disturbance vanishes, the
edge states converge to the origin, which implies that
consensus is achieved. Moreover, the distance constraints
(dashed lines) are always respected, even in the presence of
disturbance d. On the contrary, it can be seen from Figure
3 that the consensus algorithm (38) does not guarantee
connectivity maintenance, hence consensus is not achieved.

It is worth mentioning that the disturbance d could be
considered as a bounded additional control input aiming
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Fig. 2. Trajectories of the norm of the edges’ states under
control law (37). Dashed lines: distance constraints.
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Fig. 3. Trajectories of the norm of the edges’ states under
control law (38). Dashed lines: distance constraints.

to achieve a secondary task. Therefore, as can be seen from
the simulation results, the proposed controller is able to
guarantee the respect of the distance constraints even in
the presence of other multi-robot tasks more challenging
from a connectivity maintenance point of view.

5. CONCLUSIONS

Using an edge-based representation, we constructed a
strict Lyapunov function for the consensus problem with
connectivity maintenance of a first-order system commu-
nicating over a directed spanning tree with proximity
constraints. The proposed strict Lyapunov function allows
to directly conclude uniform asymptotic stability of the
agreement subspace as well as connectivity maintenance.
Moreover, a strict Lyapunov function naturally leads to
asserting strong robustness properties such as input-to-
state stability with respect to additive disturbances. Such
results are without precedent in the literature for directed
graphs, even for first-order systems.

We are confident that our main results pave the way
for significant extensions. Future and currently developed
work addresses the consensus problem for more general
digraphs as well as higher-order nonlinear systems. For
instance, the results provided in this paper may be used
as a starting block in considering additional inter-agent or
information constraints such as collision/obstacle avoid-
ance and quantised information.
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