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Abstract— This paper proposes a new interval observer
for joint estimation of the state and unknown inputs of a
discrete-time linear parameter-varying (LPV) system with an
unmeasurable parameter vector. This system is assumed to
be subject to unknown inputs and unknown but bounded
disturbances and measurement noise, while the parameter-
varying matrices are elementwise bounded. Considering the
unknown inputs as auxiliary states, the dynamics are rewritten
as discrete-time LPV descriptor dynamics. A new structure of
interval observer is then used, providing more degrees of freedom
than the classical change of coordinates-based structure. The
observer gains are computed by solving linear matrix inequalities
derived from cooperativity condition and L∞ norm. Numerical
simulations are run to show the efficiency of the proposed
observer.

Index Terms— Linear parameter-varying system, Unknown
input observer, Interval observer, Discrete-time systems

I. INTRODUCTION

Linear parameter-varying (LPV) systems are a powerful
tool to develop control algorithms for nonlinear systems,
since many of them can be represented as LPV systems. Due
to their partial linearity, LPV dynamics allow for the use
of methods developed for linear systems [1]. Most control
algorithms are based on the knowledge of the system’s state
at all time. However, in real-life applications, the vector of
scheduling parameters is not always available, the system is
subject to perturbations, the state is not completely measured,
and measurements are noisy. Observers are then needed to
reconstruct the system’s state from this incomplete and biased
information. In addition, real-life systems can be subject to
model uncertainties or faults, which can be represented by
additive unknown inputs in their dynamics [2]. To mitigate
such faults, it is often necessary to also reconstruct these
unknown inputs [3]. In this case, an unknown input observer
(UIO) [4]–[6] is used. However, these works do not consider
the presence of external perturbations or measurement noise,
which limits the performance of the proposed UIOs in a more
general context [7].

To overcome this issue, set-based estimation algorithms
have been developed, based on the assumption that the
noise, perturbations and initial state of the systems are
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unknown, but bounded. These algorithms can be separated
into two categories: set-membership estimation [8]–[10],
where the set of all states consistent with the system’s
dynamics and the uncertainties’ bounds is approximated by a
geometrical set; and interval observers [11]–[14], where two
sub-observers provide an upper and a lower bound for the state
consistent with the dynamics and uncertainties’ bounds. Due
to its computational efficiency, this paper considers interval
observers to provide guaranteed bounds to both the state of a
LPV system and the unknown inputs acting on it. Moreover,
interval observers are ideal to deal with unavailable scheduling
parameters [15].

In the literature, several unknown input interval observers
have been proposed for linear time-invariant systems [7],
[16], [17], but relatively few have been proposed for LPV
systems [18], the other observers being mainly based on set-
membership strategies [10], [19]. These strategies are based
on a change of coordinates decoupling the state from the
unknown input. Considering a second change of coordinates
to satisfy the cooperativity condition (i.e. the estimation error
state matrix is elementwise nonnegative), an interval observer
for the state is then designed. The resulting interval is then
used to compute an interval bounding the unknown inputs.
The performance of such an observer is heavily influenced
by the choice of target coordinates [20]. For these reasons,
[17] and [10] propose a different approach by augmenting the
state vector with the unknown input vector, thus considering
descriptor dynamics. Then, based on the TNL approach
(named after the notation for the different matrices used)
introduced in [13], additional gain matrices are introduced to
ensure the cooperativity condition of the interval observer that
provides guaranteed bounds simultaneously for the state and
the unknown inputs. This approach provides more degrees
of freedom for the observer design than the ones proposed,
for example, in [7] or [18].

This paper then proposes an unknown input interval
observer providing guaranteed bounds to the state and
unknown inputs of a discrete-time linear parameter varying
system with an unavailable vector of scheduling parameters
and subject to unknown but bounded perturbations. Following
[10], [13] and [15], the main contributions of this study are
twofold: (i) a novel interval observer structure for a class of
discrete-time LPV systems with unmeasurable parameters,
allowing for more degrees of freedom in the computation of
the observer’s gains thanks to the TNL approach; (ii) a new
modular gain design procedure based on the cooperativity of
the dynamics and L∞ norm of the estimation error.

The remainder of this paper is organized as follows. General



prerequisites and assumptions are given in Section II. Sec-
tion III presents the proposed structure and design procedure
for the interval observer. In Section IV, numerical simulation
results are introduced to assess the efficiency of the proposed
estimation strategy. Finally, Section V draws concluding
remarks and perspectives.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

The sets of positive integers and real numbers are denoted
respectively by N and R. The matrix In is the identity matrix
of size n ∈ N. The vector 1n is the column vector of size n ∈
N filled with ones. The matrix 0 is the matrix of appropriate
size filled with zeros. The matrices A> and A†, with A ∈
Rn×m, denote respectively the transpose and the Moore-
Penrose pseudo-inverse of matrix A. The notations A � 0
and A � 0 (respectively A � 0 and A ≺ 0) mean that A is
positive or negative semidefinite (resp. positive or negative
definite). The matrix diag(A1, . . . , An) is the block diagonal
matrix with diagonal blocks A1, . . . , An. Given a signal
x : N→ Rn, its Euclidean norm is defined as ‖xk‖22 = x>k xk
and its L∞ norm is the supremum over time of its Euclidean
norm, i.e. ‖x‖∞ = sup {‖xk‖2|k ∈ N}. The set of all signals
x : N→ Rn satisfying ‖x‖∞ <∞ is denoted by Ln∞. The
Kronecker product of two matrices A and B is denoted by
A⊗B. Finally, ? is a placeholder denoting the transpose of
a term placed symmetrically in a matrix.

B. Preliminary results on interval analysis

Let A1, A2 ∈ Rn×m be two matrices. Then, the relation
A1 ≤ A2 is understood elementwise. Moreover, a matrix
A ∈ Rn×m can be decomposed into two nonnegative matrices
A+ = max {0, A} (where the maximum is understood
elementwise) and A− = A+ − A. The matrix A is said
to be nonnegative if A− = 0. The same decomposition can
be applied to any vector x ∈ Rn.

Lemma 1 ([21]). Let x ∈ Rn be a vector satisfying x ≤
x ≤ x, with x, x ∈ Rn.

1) Let A ∈ Rm×n be a constant matrix. Then

A+x−A−x ≤ Ax ≤ A+x−A−x.

2) Let A ∈ Rm×n be a matrix satisfying A ≤ A ≤ A,
with A,A ∈ Rm×n. Then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax

≤ A+
x+ −A+x− −A−x+ +A−x−.

Remark 1. If x is a constant vector and A a matrix satisfying
A ≤ A ≤ A, the first item of Lemma 1 becomes

Ax+ −Ax− ≤ Ax ≤ Ax+ −Ax−.

Lemma 2 ([22]). Let F (z, ρ) = M(ρ)z be a function of
z and ρ, with M(ρ) a matrix and z ≤ z ≤ z. If there
exist two matrices M and M and two functions F (z, z)

and F (z, z) satisfying, for all possible values of ρ and z,
M ≤M(ρ) ≤M and F (z, z) ≤ F (z, ρ) ≤ F (z, z) then{∥∥F (z, z)− F (z, ρ)

∥∥
2
≤ lF ‖z − z‖2 + lF ‖z − z‖2 +mF

‖F (z, z)− F (z, ρ)‖2 ≤ lF ‖z − z‖2 + lF ‖z − z‖2 +mF

where mF and mF are positive constants depending on the
values of M and z, and

lF =
∥∥∥M+

∥∥∥
2

+
∥∥M+

∥∥
2

lF =
∥∥∥M−∥∥∥

2
+
∥∥M−∥∥

2

C. Problem formulation

Consider the following discrete-time LPV system{
xk+1 = A(ρk)xk +B(ρk)uk +Ddk +Dw(ρk)wk

yk = Cxk +Dvvk
(1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the known
input vector, yk ∈ Rny is the output vector, dk ∈ Rnd is
the unknown input vector, wk ∈ Rnw and vk ∈ Rnv are
respectively the disturbance and measurement noise vectors
and ρk ∈ Rnρ is the unmeasurable parameter vector. The
matrices A(ρk), B(ρk), C, D, Dw(ρk) and Dv are matrices
of appropriate dimensions such that

M(ρk) = M0 + ∆M(ρk), (2)

with M ∈ {A,B,Dw}.
Assumption 1. The initial state vector x0, the disturbance
vector wk and the measurement noise vector vk are unknown
but bounded and satisfy x0 ≤ x0 ≤ x0, wk ≤ wk ≤ wk
and vk ≤ vk ≤ vk, ∀k ≥ 0, with wk, wk ∈ Lnw∞ and
vk, vk ∈ Lnv∞ .

Moreover, since the parameter vector ρk is unmeasurable,
some conditions have to be imposed to the matrices ∆A,
∆B and ∆Dw to design an observer.

Assumption 2. The matrices ∆A, ∆B and ∆Dw are
unknown but bounded and satisfy ∆A ≤ ∆A(ρk) ≤ ∆A,
∆B ≤ ∆B(ρk) ≤ ∆B and ∆Dw ≤ ∆Dw(ρk) ≤ ∆Dw,
∀k ≥ 0.

Finally, a condition has to be imposed on the evolution of
the state vector over time.

Assumption 3. The known input vector uk, the unknown input
vector dk and the state vector xk are such that uk ∈ Lnu∞ ,
dk ∈ Lnd∞ and xk ∈ Lnx∞ . As a direct consequence, yk ∈ Lny∞ .

The goal of the present paper is to propose a new interval
observer derived from the interval estimation strategies for
discrete-time LPV systems proposed in [15] and the unknown
input interval observer for discrete-time linear time invariant
system proposed in [17]. The proposed interval observer must
provide simultaneously guaranteed bounds xk, xk and dk, dk
to the state vector and the unknown input vector such that
xk ≤ xk ≤ xk and dk ≤ dk ≤ dk, ∀k > 0.



III. MAIN RESULT

This section presents the proposed framer for the linear
parameter-varying system as well as the L∞-based design
strategy for the interval observer gains.

A. System augmentation
In [7], [16], [18] are proposed different strategies using a

change of coordinates to decouple the state and the unknown
inputs. Guaranteed bounds can then be computed for the state
vector and this information is used to compute bounds for the
unknown inputs. In this paper, the dynamical system (1) is
instead rewritten into a discrete-time LPV descriptor system
by considering the unknown inputs as auxiliary states [17].
Then, consider the equivalent system{

Ezk+1 = F (ρk)zk +G(ρk)uk +W (ρk)wk

yk = Hzk +Dvvk
(3)

where z>k =
[
x>k d>k−1

]
, H =

[
C 0

]
,

E =

[
Inx −D
0 0

]
, G(ρk) =

[
B(ρk)

0

]
,

F (ρk) =

[
A(ρk) 0
0 0

]
, W (ρk) =

[
Dw(ρk)

0

]
,

and, for the definition of x0, d−1 is chosen to be 0. The
matrices F (ρk), G(ρk) and W (ρk) can then be decomposed
into two parts as in (2) and the bounds of ∆F (ρk), ∆G(ρk)
and ∆W (ρk) are immediately deduced from Assumption 2.

Assumption 4. The matrices E and H satisfy the rank
condition

rank

[
Inx −D
C 0

]
= nx + nd = nz .

With the descriptor formulation given in (3), the goal of
the proposed strategy is to find two bounds zk and zk for the
augmented state vector zk such that zk ≤ zk ≤ zk, ∀k ∈ N.
The interval observer design is then based on the following
Lemma.

Lemma 3 ([23]). Given matrices X ∈ Rn×m, Y ∈ Rm×p
and Z ∈ Rn×p with rankY = p, the general solution X of
the equation XY = Z is

X = ZY † + Ξ
(
Im − Y Y †

)
where Ξ ∈ Rn×m is an arbitrary matrix.

With Lemma 3 and Assumption 4, there exist pairs of
matrices (T,N) satisfying

TE +NH = Inz , (4)

where

T = Θ†α1 + ΞΨα1, N = Θ†α2 + ΞΨα2, (5)

with Ξ ∈ Rnz×(nz+ny) a free matrix, and

Θ =

[
E
H

]
, Ψ = Inz+ny −ΘΘ†,

α1 =

[
Inz
0

]
, α2 =

[
0
Iny

]
.

Assumption 5. The pair (TF0, H) is observable.

B. Framer for LPV systems

The proposed framer for system (3) obeys the dynamics
zk+1 = (TF0 − LH) zk + TG0uk +Nyk+1

+ Lyk + φ
k

+ χ
k

+ ψ
k

+ ωk

zk+1 =
(
TF0 − LH

)
zk + TG0uk +Nyk+1

+ Lyk + φk + χk + ψk + ωk

(6)

where {
φ
k

= T+δk(F, z)− T−δk(F, z)

φk = T+δk(F, z)− T−δk(F, z)
(7){

ωk = T+δk(W,w)− T−δk(W,w)

ωk = T+δk(W,w)− T−δk(W,w)
(8){

χ
k

= T+
(
∆Gu+k −∆Gu−k

)
− T−

(
∆Gu+k −∆Gu−k

)
χk = T+

(
∆Gu+k −∆Gu−k

)
− T−

(
∆Gu+k −∆Gu−k

)
(9)

ψ
k

= (TW0)
+
wk − (TW0)

−
wk + (NDv)

−
vk+1

− (NDv)
+
vk+1 + (LDv)

−
vk − (LDv)

+
vk

ψk = (TW0)
+
wk − (TW0)

−
wk + (NDv)

−
vk+1

− (NDv)
+
vk+1 +

(
LDv

)−
vk −

(
LDv

)+
vk
(10)

and, for given matrix M and vector a,{
δk(M,a) = ∆M+a+k −∆M

+
a−k −∆M−a+k + ∆M

−
a−k

δk(M,a) = ∆M
+
a+k −∆M+a−k −∆M

−
a+k + ∆M−a−k

with L and L two observer gains such that TF0 − LH and
TF0 − LH are nonnegative matrices.

Theorem 1. Let Assumptions 1 and 2 hold, TF0 − LH ,
TF0 − LH be nonnegative matrices and d−1 = 0. Then, zk
and zk obeying the dynamics (6) satisfy

zk ≤ zk ≤ zk, ∀k ≥ 0. (11)

Proof. Let ek = zk − zk and ek = zk − zk be the upper and
lower estimation errors. Using equation (4), the descriptor
vector zk satisfies

zk+1 = (TF (ρk)− LH) zk + TG(ρk)uk +Nyk+1

+ Lyk + TW (ρk)wk − LDvvk −NDvvk+1,
(12)

Using the difference equation (12), the dynamics of the lower
estimation error are then

ek+1 = (TF0 − LH) ek − φk + T∆F (ρk)zk

− χ
k

+ T∆G(ρk)uk − ωk + T∆W (ρk)wk

− ψ
k

+ TW0wk −NDvvk+1 − LDvvk.

(13)

Replacing L by L in (12), the dynamics of the upper
estimation error are

ek+1 =
(
TF0 − LH

)
ek + φk − T∆F (ρk)zk

+ χk − T∆G(ρk)uk + ωk − T∆W (ρk)wk

+ ψk − TW0wk +NDvvk+1 + LDvvk

(14)



By Lemma 1, knowing that Assumptions 1 and 2 hold, it is
immediate that

β
k

= T∆G(ρk)uk − χk + T∆W (ρk)wk − ωk
+ TW0wk −NDvvk+1 − LDvvk − ψk ≥ 0,

(15a)

βk = χk − T∆G(ρk)uk + ωk − T∆W (ρk)wk

+ ψk − TW0wk +NDvvk+1 + LDvvk ≥ 0.
(15b)

With Assumptions 1 and 2, for k = 0,

εk = T∆F (ρk)zk − φk ≥ 0, (16a)

εk = φk − T∆F (ρk)zk ≥ 0. (16b)

Given that TF0 − LH, TF0 − LH ≥ 0, then e1, e1 ≥ 0 so
that z1 ≤ z1 ≤ z1 and (16a) and (16b) are true for k = 1.
Then, given that (15a) and (15b) are true at all time k ≥ 0,
by induction, (11) is satisfied at all time k ≥ 0.

C. Interval observer with L∞ performance

In order for the framer (6) to be an interval observer for
the system (3), the dynamics of the estimation errors ek and
ek have to be input-to-state stable [24]. To guarantee this and,
in addition, to reduce the impact of the system’s uncertainties
on the bounds zk and zk, a L∞-based design procedure is
given in the following theorem to obtain the gain matrices.

Theorem 2. Let all the conditions of Theorem 1 hold. For a
given scalar µ satisfying 0 < µ < 1, if there exists a scalar
γ ≥ 0, a positive definite diagonal matrix P ∈ R2nz×2nz ,
and a block diagonal matrix X ∈ R2nz×2ny such that

S ≥ 0 (17a)
P � µI2nz (17b)

(µ− 1)P + γQ ? ? ?
0 −γI2nz ? ?
0 0 −γI2nz ?
S P P −P

 � 0 (17c)

where S = P (I2⊗T )(I2⊗F0)−XΥ, Υ = I2⊗H , and Q =

6 · diag
(
l2φInz , l

2

φInz

)
, with lφ and lφ defined in Lemma 2,

then (6) is a robust interval observer for system (1). This
interval observer satisfies the performance

‖ek‖22 ≤
(1− µ)k

µ
V0 +

γ

µ2

(
‖β‖2∞ + η

)
(18)

where e>k =
[
e>k e>k

]
, V0 = e>0 Pe0, β>k =

[
β>
k

β
>
k

]
,

with β
k

and βk defined in (15), ‖β‖∞ is the L∞ norm of βk
over time as defined in Section II-A, and η = 3

(
m2
φ +m2

φ

)
,

with mφ and mφ defined in Lemma 2.

Proof. Since P � 0, all its diagonal elements are strictly
positive. Defining the matrix X = P diag(L,L), condition
(17a) is then equivalent to the nonnegativity of TF0 − LH
and TF0 − LH .

Moreover, the dynamics of ek is

ek+1 = Πek + εk + βk

where Π = (I2 ⊗ T ) (I2 ⊗ F0) − LΥ and ε>k =
[
ε>k ε>k

]
,

with L = diag(L,L) and εk and εk defined in (16). Consider
the candidate Lyapunov function Vk = e>k Pek. The increment
of V is

Vk+1 − Vk = e>k (Π>PΠ− P )ek + ε>k Pεk + β>k Pβk

+ e>k Π>Pεk + e>k Π>Pβk + ε>k PΠek

+ ε>k Pβk + β>k PΠek + β>k Pεk

= e>k (Π>PΠ− (1− µ)P )ek − µe>k Pek
+ ε>k (P − γI2nz )εk + γε>k εk

+ β>k (P − γI2nz )βk + γβ>k βk

+ e>k Π>Pεk + e>k Π>Pβk + ε>k PΠek

+ ε>k Pβk + β>k PΠek + β>k Pεk.

However, ε>k εk = ε>k εk + ε>k εk. The functions
T∆F (ρk)zk, φ

k
and φk satisfy the assumptions of Lemma 2

so that εk and εk are globally Lipschitz. Moreover, by
Lemma 2{

ε>k εk ≤
(
lφ ‖zk − zk‖2 + lφ ‖zk − zk‖2 +mφ

)2
ε>k εk ≤

(
lφ ‖zk − zk‖2 + lφ ‖zk − zk‖2 +mφ

)2
where ‖zk − zk‖22 = e>k ek and ‖zk − zk‖22 = e>k ek. Then,
by Cauchy-Schwarz inequality,ε

>
k εk ≤ 3

(
l
2

φe
>
k ek + l2φe

>
k ek +m2

φ

)
ε>k εk ≤ 3

(
l
2

φe
>
k ek + l2φe

>
k ek +m2

φ

)
so that

ε>k εk ≤ e>k Qek + η. (19)

With inequality (19), the increment of V now satisfies

Vk+1 − Vk ≤

ekεk
βk

> Λ

ekεk
βk

− µVk + γ ‖βk‖22 + γη (20)

where

Λ =

Λ11 Π>P Π>P
PΠ P − γI2nz P
PΠ P P − γI2nz

 (21)

with Λ11 = Π>PΠ− (1− µ)P + γQ.
If Λ � 0, inequality (19) implies that the estimation error

ek remains bounded over time [25] since, by Assumption 1,
‖βk‖2 <∞, ∀k ≥ 0. Then, the framer (6) is a robust interval
observer for the descriptor LPV system (3).

By using the Schur complement [26], the linear matrix
inequality (LMI) Λ � 0 is equivalent to the condition (17c).

Finally, since Λ � 0, the quadratic term in the right hand
side of (19) is negative. Therefore, there exists a scalar µ
such that 0 < µ < 1 satisfying the inequality

Vk+1 − Vk ≤ −µVk + γ ‖β‖2∞ + γη

where ‖β‖∞ is the L∞ norm of βk over time. Then,

Vk+1 ≤ (1− µ)k+1V0 +

k∑
i=0

(1− µ)iγ
(
‖β‖2∞ + η

)
. (22)



Since 0 < µ < 1, it is immediate that 0 < 1 − µ < 1.
Therefore, the inequality (22) can be rewritten as

Vk+1 ≤ (1− µ)k+1V0 +
γ

µ

(
‖β‖2∞ + η

)
.

With condition (17b), µ ‖ek‖22 ≤ Vk, hence the performance
(18).

With Theorem 2, the matrices L and L can be obtained
as diag(L,L) = P−1X while minimizing γ.

Remark 2. Due to the symmetry of the constraints, if the
observer gains are obtained by minimizing γ subject to
the constraints (17a) to (17c), L and L might be equal.
However, the problem has a modular structure, allowing
for the introduction of additional constraints. The constraints
on the upper estimation error can then be different from
the constraints on the lower estimation error, leading to two
different sets of gains.

IV. SIMULATION RESULTS

To assess the efficiency of the proposed interval observer, an
academic example adapted from [27] is used. The considered
system is

A0 = 0.1

−6 5 4
7 5 2
1 5 3

 , B0 =

0
0
1

 , D =

0
1
0


C =

[
0 1 1
1 0 0

]
, Dw0 = I3, Dv = 1,

∆B = 0, ∆Dw = 0, and

∆A(k) =

0.02 ·

0.1s(ω1k) s(ω2k) c(ω1k)
c(ω2k) s(2ω1k) 0.1c(2ω1k)
s(ω1k/2) 0.1c(ω2k/2) s(ω1k)c(ω2k)


where c(x) and s(x) stand for cos(x) and sin(x), ω1 = 0.02
and ω2 = 0.1/3. With this definition of ∆A(k),

∆A = −∆A = 0.02 ·

0.1 1 1
1 1 0.1
1 0.1 1

 .

Moreover, the unknown input signal is dk = 0.5c(0.2k),
the known input signal is uk = −

[
0 1 0

]
yk, and the

disturbance and measurement noise vectors are respectively
two uniformly distributed random vectors so that w = −w =
0.1 · 13 and v = −v = 0.1 · 12. Finally, the bounds for the
initial state are x0 = 5 · 13 and x0 = −2 · 13, with x>0 =[
−1 4 2

]
, so that z>0 =

[
x>0 0

]
and z>0 =

[
x>0 0

]
.

The value of the matrix Ξ is a design parameter of the
proposed observer. It could be chosen so as to minimize the
values of lφ and lφ or any other use case dependent criterion.
For the sake of simplicity, the value Ξ = 0 is chosen so that

T =


0.5 0 0 0
0 0 −1 0
0 0 1 0
0 −1 −1 0

 , N =


0 0.5
1 0
0 0
1 0

 ,
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0

Fig. 1. States and guaranteed bounds from the proposed observer.

yielding lφ = lφ = 0.0637. Minimizing γ under the
constraints (17) with µ = 0.1, γ = 0.2729 and the observer
gains are L = L, with

L =


0.2 −0.3006
−0.5 −0.1
0.3 0.1
−1 −0.8

 .

The intervals obtained with the proposed observer for the
three states are presented in Figure 1 and the interval for
the unknown inputs is presented in Figure 2. The real states
and unknown inputs are contained in the computed intervals.
Moreover, the interval width is not constant due to the effect
of the parameter uncertainties as well as of the known and
unknown input vectors.

V. CONCLUSION

This paper presents a new interval observer for discrete-
time linear parameter-varying systems with unmeasurable
parameter vector subject to unknown inputs and unknown but
bounded disturbance and measurement noise. This observer
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Fig. 2. Unknown input and guaranteed bounds from the proposed observer.

is used to compute simultaneously guaranteed bounds for the
system’s state and the unknown inputs. By considering the
unknown inputs as auxiliary states, the system is rewritten
as a linear parameter-varying descriptor system, allowing for
the introduction of additional gains compared to the classical
interval observers. These gains are tuned by enforcing the
cooperativity of the observer and the effect of the pertur-
bations is attenuated by considering a L∞ norm criterion.
All these conditions are written as linear matrix inequalities
(LMI), such that additional constraints for the tuning of the
observer’s gains can be easily introduced as long as they can
be written as LMIs. Numerical simulation results are presented
to assess the efficiency of the proposed method. In future work,
this method could be adapted to linear-parameter varying
descriptor systems subject to unknown inputs or to linear
parameter-varying systems with parameter dependent output
matrix. In addition, the tuning of the weighting matrices could
be integrated into the proposed L∞ design procedure.
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