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Abstract— We address the consensus problem with collision
avoidance for multi-agent systems under limited sensing ranges,
in the case where new interconnections and agents may be
added at any time. The graph topology is represented by a
dynamic undirected graph, assumed to be connected only at
an initial time, and the open multi-agent system is modeled
via a multidimensional impulsive switched representation. We
propose a barrier-Lyapunov-function-based consensus control
law that guarantees inter-agent collision-avoidance and con-
nectivity maintenance and, relying on the edge-agreement
framework, we establish almost-everywhere asymptotic stability
of the consensus manifold. The obtained results are also readily
applicable to closed multi-agent systems with edge addition.
A numerical simulation illustrates the effectiveness of the
proposed approach.

I. INTRODUCTION

Open multi-agent systems are a particular class of net-
worked systems whose number of nodes and/or edges is
not fixed. They appear naturally in applications involving,
e.g., sensor-based approaches, in which case the network’s
topology varies depending on the sensing range of each
agent. Then, the set of agents may be time-varying, as agents
may join or leave the network at any time and new edges
may be created as new neighbors “appear” within range.
Recent studies of open multi-agent systems include, e.g.,
[1], where the problem of distributed maximum computa-
tion (a.k.a MAX-consensus) is addressed and [2], which
focuses on open multi-agent systems interconnected over
strongly connected directed graphs. In [3] a stability-analysis
framework for multidimensional switched systems is used to
address consensus of open multi-agent systems. See also [4],
in which some stability results that do not rely on the size
of the network are presented.

Both, the addition and removal of nodes and edges modify
the graph’s topology, so they have an effect on consen-
sus. For instance, as it is well-known, the graph being
connected is a necessary condition for consensus. Hence,
it is natural to impose that the controller guarantees the
graph’s connectivity. In addition, in order to ensure the safety
of the system, autonomous agents moving “freely” in a
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workspace must avoid collisions among them. To guarantee
connectivity maintenance and the satisfaction of other inter-
agent constraints, [5]–[8] rely on the control of the algebraic
connectivity of the graph. Furthermore, such approaches
implicitly deal with the addition/removal of edges, since the
set of edges may change as long as the algebraic connectivity
remains positive. However, the latter is a global parameter,
so additional distributed-estimation approaches must be im-
plemented. From a local perspective, barrier-function- and
navigation-function-based approaches have been proposed,
e.g., in [9]–[11], to address the case in which new edges are
created as an agent enters the sensing zone of another one.
In those references, both consensus and connectivity main-
tenance are established. In [12] the edge-addition problem
for directed graphs is studied, but inter-agent constraints are
not considered. A consensus control strategy for nonlinear
passive systems that may deal with inter-agent constraints
and time-varying topologies is proposed in [13]. None of the
above, however, consider open multi-agent systems since the
number of agents is considered fixed.

In this letter we address the problem of consensus-based
control of an open multi-agent system where the agents do
not communicate with each other, but can only measure their
relative state with respect to their neighbors, if within a
limited sensing zone. The controller is designed such that
the initial existing edges as well as all the newly created
ones are always maintained. Moreover, all-to-all collision
avoidance is guaranteed by imposing a minimal-inter-agent-
distance requirement that is satisfied by the proposed control
law. As in [14], our control design and analysis rely on the
edge-agreement framework introduced in [15], which allows
to recast the consensus problem as one of stabilization of
the origin and constitutes a more natural setting to consider
inter-agent constraints.

Relative to the existing literature, we contribute by propos-
ing a control law that ensures consensus-based formation
of an open multi-agent system connected over a dynamic
undirected graph with guaranteed connectivity-maintenance
and all-to-all collision avoidance. Our results are restricted
to the case of first-order systems, but we establish (almost-
everywhere) asymptotic stability of the consensus manifold,
via Lyapunov’s direct method and based on the edge-
agreement framework. This differs from the existing works
in the literature where only convergence to consensus is
guaranteed. Establishing asymptotic stability and disposing
of a Lyapunov function, even for simple linear systems,
is an important step towards extending our results to net-



works of complex nonlinear systems. With respect to the
references mentioned above, the novelty of our contribution
lies in dealing with consensus under inter-agent constraints
(local connectivity maintenance and collision avoidance)
and establishing strong stability results for open multi-agent
systems, with direct extension to closed switched multi-agent
systems with edge addition. This also goes beyond the results
presented in [14] applied to first-order systems.

The remainder of this letter is organized as follows.
In Section II are presented the model and the problem
statement. The main results are stated in Section III and are
illustrated via numerical simulations in Section IV. Finally,
some concluding remarks are given in Section V.

II. MODEL AND PROBLEM DESCRIPTION

As mentioned in the Introduction, in numerous practical
scenarios the topology is determined by the sensing capabili-
ties of the agents. Thus, in such cases, a new interconnection
is created whenever an agent enters the sensing range of
a neighbor. Moreover, in an open multi-agent system, new
agents may be added to the system as they are detected.
This naturally leads to study the multi-agent system using a
switched-system representation.

Let σ(t), σ : R≥0 → P be the switching signal corre-
sponding to a topology change, where P := {1, 2, . . . , s} is
the set of s possible switching modes. Let ϕ ∈ P denote a
mode of the system, that is, ϕ = σ(τ), where τ ∈ [tl, tl+1)
and tl, tl+1 are switching instants, defined further below.

Next, for the switching signal σ(t) we present the concept
of transition-dependent average dwell time.

Definition 1: ( [3, Definition 2]) On a given interval
[t0, tf ), tf > t0 ≥ 0 and for any ϕ̂, ϕ ∈ P , where ϕ̂ precedes
ϕ, denote the total number of switchings from ϕ̂ to ϕ by
Nϕ̂,ϕ(t0, tf ) and denote the total active duration of mode ϕ

by Tϕ̂,ϕ(t0, tf ). Then, for any given scalar N̂ϕ̂,ϕ, the constant
τϕ̂,ϕ > 0 that satisfies

Nϕ̂,ϕ(t0, tf ) ≤ N̂ϕ̂,ϕ +
Tϕ̂,ϕ(t0, tf )

τϕ̂,ϕ
, (1)

is called the transition-dependent average dwell time of the
switching signal σ(t).

At each mode, the open multi-agent system is composed
of Nϕ agents described by the single integrator system

ẋi = ui (2)

where xi ∈ R, i ≤ Nϕ, denotes the state of each agent1, ui ∈
R is the control input. The agents interact over a dynamic
topology described by an undirected graph Gϕ(Vϕ, Eϕ) where
the set of nodes Vϕ := {1, 2, . . . , Nϕ} corresponds to the
labels of the agents and the set of edges, Eϕ ⊆ V2

ϕ, of
cardinality Mϕ, represents the communication between a pair
of nodes, that is, an edge ek := (i, j) ∈ Eϕ, k ≤ Mϕ,
is an unordered pair indicating that agent j has access to

1For simplicity, we consider xi ∈ R, but all the statements hold, and
may be rewritten, for xi ∈ Rn under appropriate modifications involving
the use of the Kronecker product.

information from node i and vice-versa. Additionally, for
every instant of time, we define two interaction sets for each
agent i. The first one corresponds to the agents that are within
the sensing range of agent i during mode ϕ and is defined
as

Nϕ,i = {j ∈ Vϕ, j ̸= i : |xi(t)− xj(t)| ≤ ∆i}, (3)

where ∆i is the radius of the sensing zone of agent i. The
second one is a subset of (3) and is defined as

N ε
ϕ,i = {j ∈ Vϕ, j ̸= i : |xi(t)− xj(t)| ≤ ∆i − ε} (4)

where ε > 0 is a small positive scalar.
Remark 1: Without loss of generality, for any edge ek we

set ∆i = ∆j =: ∆k. Therefore, since the graph is undirected,
j ∈ N ε

ϕ,i implies i ∈ N ε
ϕ,j . •

Based on the sets in (3) and (4), we define the initial
topology as the graph formed by the set of edges in the
initial mode ϕ0 = σ(τ), τ ∈ [t0, t1), with t1 being the first
topology-switch instant. That is, Eϕ0

= {i, j ∈ Vϕ0
: j ∈

Nϕ0,i} and we assume that the following holds.
Assumption 1: The initial undirected graph Gϕ0 is con-

nected.
A switching instant tl is defined as the time when new

agents and/or edges are added to the graph, that is, whenever
an agent or a group of agents enters the sensing zone of any
other agent. Hence, for any mode ϕ = σ(τ) ∈ P , τ ∈
[tl, tl+1), with its previous mode denoted ϕ̂ = σ(τ̂) ∈ P ,
τ̂ ∈ [tl−1, tl), the set of edges is obtained by the rule

Eϕ = Eϕ̂ ∪ E∗
σ(t−l ) (5)

where

E∗
σ(t−l )

=
{
i, j ∈ Vϕ :

[
(i, j) /∈ Eϕ̂

]
∧
[
j ∈ N ε

σ(t−l ),i

]}
. (6)

The rule (5) means that whenever an agent j that did not
form an edge with agent i during the mode ϕ̂ enters the
set N ε

ϕ̂,i
, at some time instant tl, a new edge is created and

the system switches from mode ϕ̂ to mode ϕ. Now, since
in this paper the objective is to preserve all the initial and
added edges at each mode, while only a finite number of new
agents can be added to the system, the system necessarily
stops switching as soon as no new edges are created, that is,
when the graph is complete. Hence, we pose the following.

Assumption 2: The total number of possible switching
modes is finite, that is, |P| < ∞, where |P| denotes the
cardinality of P .

Now, for each mode ϕ ∈ P , we define an edge state as
zϕ,k := xi − xj ∀k ≤ Mϕ, ek ∈ Eϕ (7)

and, for each k ≤ Mϕ, the set of inter-agent constraints as

Dϕ,k :=
{
zϕ,k ∈ R : δ < |zϕ,k| < ∆k,

}
, (8)

where δ > 0 is the minimum distance between any pair of
agents that guarantees collision avoidance.

The control goal is for the agents to achieve a consensus-
based formation, under the inter-agent constraints given
by the sets Dϕ,k in (8) and the edges’ update rule in
(5). Mathematically, the formation problem translates into



making xi − xj → zdϕ,k, or equivalently, zϕ,k → zdϕ,k in
the relative coordinates, where zdϕ,k ∈ R denotes the desired
relative state between a pair of neighboring agents i and j for
each mode. Hence, we address this problem using the edge-
based representation method of [14]. This has the advantage
of recasting the consensus-based problem as the stabilization
of the origin in error coordinates.

For each mode, let us denote the so-called incidence
matrix of the graph Eϕ ∈ RNϕ×Mϕ with rows indexed by the
nodes and columns indexed by the edges. Its (i, k)th entry is
defined as follows: [Eϕ]ik := −1 if i is the terminal node of
edge ek, [Eϕ]ik := 1 if i is the initial node of edge ek, and
[Eϕ]ik := 0 otherwise. Then, the edge states in (7) satisfy

zϕ := E⊤
ϕ xϕ, (9)

where xϕ ∈ RNϕ and zϕ ∈ RMϕ are defined, respectively,
as x⊤

ϕ =
[
x⊤
1 · · · x⊤

Nϕ

]
and z⊤ϕ :=

[
z⊤ϕ,1 . . . z⊤ϕ,Mϕ

]
, so the

consensus-based formation objective may be defined in terms
of the error

z̃ϕ = E⊤
ϕ xϕ − zdϕ, (10)

where zd⊤ϕ = [zd⊤ϕ,1 · · · zd⊤ϕ,Mϕ
] ∈ RMϕ , as

lim
t→∞

|z̃ϕ(t)| = 0. (11)

To address this problem we rewrite the system’s dynamics
in terms of z̃ϕ by collecting the inputs of the multiple agents
into the vector u⊤

ϕ =
[
u⊤
1 · · · u⊤

Nϕ

]
∈ RNϕ . Then, taking

the time derivative of (10) and using (2), we obtain
˙̃zϕ = E⊤

ϕ uϕ. (12)

In these coordinates, the formation objective as defined in
(11) is achieved if the origin is asymptotically stabilized for
the edge system (12).

One of the advantages of considering the edge states rather
than the node’s is that it is possible to obtain an equivalent
reduced system that is easier to analyze using stability theory.
Indeed, as observed in [15], using an appropriate labeling
of the edges, the incidence matrix is expressed as Eϕ =
[ET ϕ ECϕ], where ET ϕ ∈ RNϕ×(Nϕ−1) denotes the full-
column-rank incidence matrix corresponding to an arbitrary
spanning tree GT ϕ ⊂ Gϕ and ECϕ ∈ RNϕ×(Mϕ−Nϕ+1) rep-
resents the incidence matrix corresponding to the remaining
edges not contained in GT ϕ. Moreover,

Eϕ = ET ϕRϕ, (13)

with

Rϕ :=
[
INϕ−1 Tϕ

]
, Tϕ :=

(
E⊤

T ϕET ϕ

)−1
E⊤

T ϕECϕ. (14)

The identity (13) is useful to derive a reduced-order
model—cf. [15]. Indeed, the edges’ states are also split as

z̃ϕ =
[
z̃⊤T ϕ z̃⊤Cϕ

]⊤
, (15)

where z̃T ϕ ∈ RNϕ−1 are the states of the edges of an
arbitrary spanning tree GT ϕ and z̃Cϕ ∈ RMϕ−Nϕ+1 are the
states of the remaining edges ek ∈ Gϕ\GT ϕ. Thus, after (9),
(11), and (15), and denoting zdT ϕ ∈ RNϕ−1 as the vector

of desired relative displacements corresponding to GT ϕ, we
obtain

z̃ϕ = R⊤
ϕ z̃T ϕ. (16)

Using the identity (16), the edge system (12) can be trans-
formed into the reduced-order system

˙̃zT ϕ = E⊤
T ϕuϕ (17)

Then, asymptotic stability for the origin of (17) implies
asymptotic stability for the origin of (12). Therefore, the
formation objective defined in (11) is achieved if the origin is
asymptotically stabilized for the reduced-order system (17).

III. MAIN RESULT

A. Control approach

To address the formation problem with inter-agent con-
straints formulated above, we propose a control law based on
the gradient of a barrier Lyapunov function (BLF). These are
positive definite, but their domain of definition is restricted
by design to open subsets of the Euclidean space, and they
grow unbounded as the state approaches the boundary of
their domain. We define a BLF as follows—cf. [16].

Definition 2 (Barrier Lyapunov function): Consider the
system ẋ = f(x) and let J be an open set with boundary
∂J and containing the origin. A BLF is a positive
definite function V : J → R≥0, x 7→ V (x), that is C1,
satisfies V̇ (x) ≤ 0 and has the property V (x) → ∞ and
|∇V (x)| → ∞ as x → ∂J , where ∇V (x) = ∂V (x)/∂x.

Now, akin to (8), for each mode and for each k ≤ Mϕ,
the inter-agent constraints in terms of the error coordinates
are given by the set

D̃ϕ,k := {z̃ϕ,k ∈ R : δ < |z̃ϕ,k + zdϕ,k| < ∆k}. (18)

Then, for each k ≤ Mϕ, we define a candidate BLF Wϕ,k :
D̃ϕ,k → R≥0, as

Wϕ,k(z̃ϕ,k) =
1

2

[
z̃2ϕ,k +Bϕ,k(z̃ϕ,k + zdϕ,k)

]
, (19)

where Bϕ,k(z̃ϕ,k + zdϕ,k) is non-negative and satisfies
Bϕ,k(z

d
ϕ,k) = 0, Bϕ,k(z̃ϕ,k + zdϕ,k) → ∞ as |z̃ϕ,k + zdϕ,k| →

∆k or as |z̃ϕ,k + zdϕ,k| → δk, and ∇Bϕ,k(z
d
ϕ,k) = 0, where

∇Bϕ,k(z
d
ϕ,k) =

∂Bϕ,k(z̃ϕ,k + zdϕ,k)

∂z̃ϕ,k

∣∣∣∣∣
z̃ϕ,k=0

.

Therefore, Wϕ,k(z̃ϕ,k) → ∞ as |z̃ϕ,k + zdϕ,k| → ∆k or as
|z̃ϕ,k + zdϕ,k| → δk.2

Then, the formation control law for each agent is set to

ui := −c
∑

k≤Mϕ

[Eϕ]ik∇Wϕ,k(z̃ϕ,k), ∀i ≤ Nϕ (20)

and, introducing the candidate BLF for the overall system,

Vϕ(z̃ϕ) =
∑

k≤Mϕ

Wϕ,k(z̃ϕ,k) (21)

2For agents evolving in Rn, in (18) and (19) , consider | · | to be the
Euclidean norm and replace ( · )2 with | · |2.



we write the control law may in compact form as

uϕ := −c1Eϕ∇Vϕ(z̃ϕ). (22)

Remark 2: The functions defined in (19) are reminiscent
of scalar potential functions in constrained environments [17]
and, as for the latter, the appearance of multiple critical
points is inevitable. Indeed, the gradient of the BLF (19),
∇Wϕ,k(z̃ϕ,k), vanishes at the origin and at an isolated saddle
point separated from the origin —see [18]. Therefore, when
using the gradient of (19) for the control, the closed-loop
system has multiple equilibria. •

In light of Remark 2, let us denote by z̃∗ϕ ∈ RMϕ the
vector containing the saddle points of the BLF for each edge
(19). Then, define the disjoint set Wϕ := {0}∪ {z̃∗ϕ}, which
corresponds to the critical points of z̃ϕ 7→ Vϕ(z̃ϕ) in (21).
Then, Vϕ satisfies α1|z̃ϕ|2 ≤ Vϕ(z̃ϕ), with α1 > 0, so

α1|z̃ϕ|2Wϕ
≤ Vϕ(z̃ϕ), α1 > 0, (23)

since |z̃ϕ|Wϕ
≤ |z̃ϕ|, where |z̃ϕ|Wϕ

:= min
{
|z̃ϕ|, |z̃ϕ− z̃∗ϕ|

}
.

Due to the open nature of the system, the dimension of the
state is not constant for all switching modes ϕ ∈ P . In fact,
even if the number of agents in the system does not change,
the dimension of z̃ϕ ∈ RMϕ increases each time a new edge
is added to the graph. Therefore, the system (17) in closed
loop with (22) may be represented as a multi-dimensional
impulsive switched system of the form

˙̃zT ϕ(t) = −c1E
⊤
T ϕET ϕ∇Vϕ(z̃T ϕ(t)), if t ∈ (tl, tl+1)

(24a)

z̃T ϕ(t
+
l ) = Ξϕ,ϕ̂z̃T ϕ̂(t

−
l ) + Φl, if t = tl (24b)

where tl are the switching instants, Ξϕ,ϕ̂ ∈ BMϕ×Mϕ̂ is a
0-1 matrix that indicates the dimension variation of the state
at tl, and Φl ∈ RMϕ is a real vector indicating the value
changes of z̃ϕ at any tl. Note also that in the right-hand side
of (24a) we used (13) and R⊤

ϕ∇Vϕ(z̃ϕ) = ∇Vϕ(z̃T ϕ), where

∇Vϕ(z̃T ϕ) :=
∂Vϕ

(
R⊤

ϕ z̃T ϕ

)
∂z̃T ϕ

.

B. Main statement

Proposition 1: Consider the open multi-agent system (2)
under Assumption 1 and in closed loop with the switching
control law (22). Then,

1) for every mode ϕ ∈ P the constraints set Dϕ :=⋂
k≤Mϕ

Dϕ,k, with Dϕ,k defined in (8) is forward
invariant, hence, collisions are avoided and all the
initial and added edges are maintained;

2) if the switching signal σ admits an average dwell time,
as in Definition 1, satisfying

τϕ,ϕ̂ >
ln(Ωϕ,ϕ̂)

γϕ
, (25)

where Ωϕ,ϕ̂ and γϕ are positive constants defined
further below, the origin of the closed-loop system
(24) is asymptotically practically stable for all initial
conditions such that zϕ,k(t0) ∈ Dϕ,k, ∀k ≤ Mϕ,
except for a zero-measure set of unstable equilibria;

3) under Assumption 2, the origin of the closed-loop
system (24) is asymptotically stable for all initial
conditions as in 2) above. □

Proof: We start by establishing the second claim. For
each mode ϕ ∈ P and for all z̃ϕ,k ∈ D̃ϕ,k, k ≤ Mϕ, the
candidate Lyapunov functions in (21) satisfy

α1|z̃T ϕ|2 ≤ Vϕ(z̃T ϕ) ≤ α2|∇Vϕ(z̃T ϕ)|2, (26)

where α1, α2 > 0 and, with an abuse of notation, we write
Vϕ as a function of z̃T ϕ since Vϕ(z̃ϕ) = Vϕ(R

⊤z̃T ϕ).
Furthermore, between switching times, that is for all τ ∈
(tl, tl+1) with l ∈ {0, . . . , |P| − 1}, the derivative of Vϕ

satisfies

V̇ϕ(z̃T ϕ(τ)) = −c1∇Vϕ(z̃T ϕ(τ))
⊤E⊤

T ϕET ϕ∇Vϕ(z̃T ϕ(τ))

≤−c1λmin(E
⊤
T ϕET ϕ)|∇Vϕ(z̃T ϕ(τ))|2

≤−γϕVϕ(z̃T ϕ(τ)), (27)

where γϕ := c1λmin(E
⊤
T ϕET ϕ)/α2 is a positive constant

since E⊤
T ϕET ϕ is positive definite—cf. [15].

Now, let ϕ̂, ϕ ∈ P denote two consecutive modes where
ϕ̂ precedes ϕ. Assume, without loss of generality, that the
added edges at each switching instant tl are labeled zϕ̂,k with
Mϕ̂ < k ≤ Mϕ̂ + r =: Mϕ, for r new edges. Then, from
(21), we have

Vϕ(z̃T ϕ(t
+
l )) =

Mϕ̂∑
k=1

Wϕ,k(z̃ϕ,k(t
+
l )) +

Mϕ∑
k=Mϕ̂+1

Wϕ,k(z̃ϕ,k(t
+
l ))

=Vϕ̂(z̃T ϕ̂(t
−
l )) +

Mϕ∑
k=Mϕ̂+1

Wϕ,k(z̃ϕ,k(t
+
l )) (28)

Recall that according to the update law (5) the topology
switches whenever an agent j is in sufficient proximity of the
ith agent, i.e., if j ∈ N ε

ϕ̂,i
. Hence, right after at the instant

tl, we have |z̃ϕ,k(t+l )| ≤ ∆k − ε, with Mϕ̂ < k ≤ Mϕ.
Therefore, using (26), we obtain

Mϕ∑
k=Mϕ̂+1

Wϕ,k(z̃ϕ,k(t
+
l )) ≤ α2|∇Vϕ(z̃T ϕ(t

+
l ))|2

≤ α2β|z̃T ϕ(t
+
l )|2Wϕ

(29)

with β > 0. Then, from (24b), (29) becomes
Mϕ∑

k=Mϕ̂+1

Wϕ,k(z̃ϕ̂,k(t
+
l )) ≤ α2β

(
|Ξϕ,ϕ̂|2|z̃T ϕ(t

−
l )|2Wϕ

+|Φl|2Wϕ

)
.

(30)
Note that |Ξϕ,ϕ̂| ≡ 1 and |Φl|Wϕ

≤ Φ̄, where the latter holds
from the fact that at a switching instant |z̃ϕ,k(tl)| ≤ ∆k − ε,
Mϕ̂ < k ≤ Mϕ. Therefore, Φ̄ := (∆k − ε)r, where r is the
number of newly added edges. Hence, replacing (30) and
(26) into (28), we obtain

Vϕ(z̃T ϕ(t
+
l )) ≤ Ωϕ,ϕ̂Vϕ̂(z̃T ϕ̂,t(t

−
l )) + Θ, (31)

with Ωϕ,ϕ̂ := (1 + α2β/α1) and Θ := α2βΦ̄
2.

From (26)-(27) and (31), and invoking [3, Theorem 1],
it follows that the origin for the reduced-order system (24)



is almost-everywhere asymptotically practically stable (that
is, except for a zero-measure set of initial conditions cor-
responding to the unstable equilibria—see Remark 2) if the
switching σ admits an average dwell-time satisfying (25).

Next, we establish the third item. In view of Assumption 2,
there is a finite number of new agents (nodes) that may be
added into the system. Hence, after the last new node or
set of nodes have joined the system, only new edges can
be added to the graph. Moreover, from (15) and (16), we
know that any new edge in mode ϕ can be represented as a
linear combination of the edges of the spanning tree in the
precedent mode ϕ̂. Therefore, if only new edges appear, (24b)
holds with Φl = 0 and Ξϕ,ϕ̂ = I , with I the identity matrix
of appropriate dimension. Consequently, (31) holds with
Θ = 0 and, by [3, Theorem 1], the origin for the reduced-
order system (24) is almost-everywhere asymptotically stable
if the average-dwell time satisfies (25). Note that the latter
necessarily holds under Assumption 2. Indeed, since only a
finite number of new nodes may be added (from practical
considerations), for any (large) τϕ,ϕ̂ there necessarily exists
tf , and consequently Tϕ,ϕ̂, so that (1) in Definition 1 holds.

Now we establish invariance of the set Dϕ (first item). To
that end, given a ϕ ∈ P , z̃ϕ,k ∈ D̃ϕ,k, k ≤ Mϕ, we show that
D̃ϕ,k is forward invariant. We proceed by contradiction. We
conclude from (27) that for any continuous mode ϕ = σ(τ),
τ ∈ (tl, tl+1), Vϕ(z̃T ϕ(τ)) is bounded. Moreover, from (31)
at every switching instant tl, Vϕ(z̃T ϕ(t

+
l )) remains bounded.

Now, assume that there exists T > 0 such that for all
t ∈ [t0, T ), z̃σ(t),k(t) ∈ D̃σ(t),k for all k ≤ Mσ(t), and
zσ(t),k(T ) /∈ D̃σ(T ),k. More precisely, we have |z̃σ(t),k(t)| →
∆k as t → T for at least one k ≤ Mσ(t). From the
definition of barrier Lyapunov function, this implies that
Vσ(t)(z̃T σ(t)(t)) → ∞ as t → T which is a contradiction
since Vσ(t)(z̃T σ(t)(t)) is bounded for all t ≥ t0. Forward
invariance of D̃σ(t),k, hence of Dσ(t), follows.

It is left to show that the set Dσ(t) corresponds to the do-
main of attraction for the closed-loop system. This follows by
showing that all solutions of (24) starting in Dσ(t) converge
to the origin. To that end, for any ϵ ∈ (0,∆k), consider
a subset Dσ(t),ϵ ⊂ Dσ(t) defined as Dσ(t),ϵ := {zσ(t) ∈
RNσ(t) : δ + ϵ < |zσ(t),k| < ∆k − ϵ, ∀ k ≤ Mσ(t)} and
let D̄σ(t),ϵ, denote the closure of Dσ(t),ϵ. From Definition 2
and (26) it follows that Vσ(t)(z̃T σ(t)) is positive definite on
D̄σ(t),ϵ and it satisfies the bounds in (26) and (23), where
|∇Vϕ(s)| is defined and strictly increasing everywhere in
D̄σ(t),ϵ, |∇Vϕ(s)| > 0 for all |s| > 0, and |∇Vϕ(0)| = 0.
This means that Vσ(t)(z̃T σ(t)) → 0 as z̃T σ(t) → 0. Therefore,
from (27), (31), and standard Lyapunov theory it follows that
all trajectories of (24) starting in Dσ(t), except for a zero-
measure set of initial conditions, converge to the origin. The
previous arguments hold for any ϵ → 0, so the origin is
attractive for all trajectories zσ(t)(t) starting in Dσ(t), except
for a zero-measure set of initial conditions. This completes
the proofs of statements 2) and 3).

Remark 3: The impulsive and multi-dimensional nature
of the open multi-agent system in the edge-based repre-

sentation (24) stymies the construction of a common Lya-
punov function [19]. Indeed, unlike the scenario of edge-
addition problem for closed multi-agent systems in the
nodes’ representation—see e.g. [9], the candidate BLF (21) is
a sum over all the edges of the graph at each mode. But, since
each time an edge is added to the graph the state changes
dimension, as denoted by Eq. (24b), the stability analysis
relies on the concept of multiple Lyapunov functions [20]. •

IV. NUMERICAL EXAMPLE

We illustrate the performance of the controller (22) via a
numerical example. The simulation consists in the consensus-
based formation of a network composed initially of six agents
subject to connectivity and collision-avoidance restrictions
and with an initial topology modeled by the connected
undirected graph in Fig. 1. Two new agents, i = 7 and i = 8
are added to the network at t = 0.5s and t = 3s, respectively.
Moreover, as the nodes get close to each other, new edges
are also added. This can be appreciated by the appearance
of new trajectories in Figs. 3 and 4, after 1s and 3s.

The initial conditions of the six original agents in the
simulation, as well as (x7(1), y7(1)) and (x8(3), y8(3)) are
presented in Table I. The limited range is taken equal for all
the agents and is set to ∆k = 4.6m. The controller gain is
set to c1 = 1.5. The barrier function is given by

Bϕ,k(zϕ,k)=κ1,k

[
ln

(
∆2

k

∆2
k − |zϕ,k|2

)
−ln

(
∆2

k

∆2
k − |zdϕ,k|2

)]

+κ2,k

[
ln

( |zϕ,k|2
|zϕ,k|2 − δ2

)
− ln

(
|zdϕ,k|2

|zdϕ,k|2 − δ2

)]
where

κ1,k :=
δ2

|zdϕ,k|2(|zdϕ,k|2 − δ2)
, κ2,k :=

1

∆2
k − |zdϕ,k|2

.
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Fig. 1: Initial interaction topology: undirected connected graph.

TABLE I: Initial conditions

Index 1 2 3 4 5 6 7 8
x [m] 1.9 -2 5.5 -5.5 5.5 -5.5 0 5
y [m] 0 0 2 2 -2 -2 5 8

The paths of each agent up to consensus are shown in
Fig. 2. It can be appreciated in Fig. 2 that the systems
successfully reach the desired formation after the eighth
agent is added to the system. The same can be appreciated
by the convergence of edge-error variables to the origin,
as shown in Fig. 4. Furthermore, it is clear from Fig. 3
that both the connectivity and collision avoidance constraints
(represented by the red dashed lines) are always respected.
Indeed, it can be seen that as a new edge is created, it never
goes beyond or below the imposed limits, meaning that it is



maintained for the rest of the simulation and that collisions
between each pair of agents are avoided.

−6 −3 0 3 6
−3

0

3

x [m]

y
[m

]

Fig. 2: Paths described by six agents from initial postures,
represented by circles, and by two more agents joining the
network from “initial” postures, represented by triangles. The
crosses denote the final positions. The black dashed lines
represent the final desired formation.
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Fig. 3: Inter-agent distances. The dashed red lines denote the
connectivity and collision avoidance constraints.
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Fig. 4: Norms of the formation errors for each edge.

V. CONCLUSIONS

This letter is the first attempt to address consensus-based
control of open multi-agent systems under inter-agent con-
straints. The controller that we propose is designed using
a gradient-based law and a barrier Lyapunov function, to
guarantee collision-avoidance and connectivity-maintenance
constraints. Even though our preliminary results are lim-
ited to first-order systems, we establish almost-everywhere
asymptotic stability of the consensus manifold for open
multi-agent systems. The results obtained also apply to

closed multi-agent systems with edge addition, but not to
directed-graph topologies or the more challenging case of
node/edge removal. These are subjects of future research.
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