
A Comparison of Two Decoupled Methods for
Simultaneous Multiple Robots Path Planning

Benjamin Bouvier and Julien Marzat

DTIS, ONERA, Université Paris Saclay, F-91123 Palaiseau, France
{firstname dot lastname at onera dot fr}

Abstract. Two path planning algorithms dedicated to multiple robots driving
simultaneously in a cluttered workspace are defined and compared in this paper.
Each robot is assigned an initial position, a goal position and a constant reference
speed, and has to drive without colliding with its teammates and the environ-
ment. Both approaches are based on an implementation of the widely known A*
algorithm and belong to the family of decoupled path planning methods, since
robots are considered sequentially and with a predefined priority ranking. The
first algorithm is called Prioritized Planning (PP), where the path of each robot
is computed sequentially while taking into account static obstacles as well as
the previously-planned robot positions. The second algorithm, called Fixed-Path
Coordination (FPC), follows a two-step approach: (i) obtaining A* paths of all
robots taking into account static obstacles only; (ii) applying a velocity-tuning
procedure so that lower-priority robots can stop and restart along their paths to
let the higher-priority robots move freely. Both algorithms have been applied on
a variety of test-cases through a Monte Carlo setup to evaluate and compare their
performances.

Keywords: Multi-robot motion coordination, Decoupled path planning, Priori-
tized Planning, Fixed-Path Coordination

1 Introduction

Coordinated path planning of a group of mobile robots is a major requirement for many
cooperative tasks in interaction with a complex environment (e.g. unknown, cluttered,
dynamical). A high-level description of the problems related to either collaborative or
competitive robot coordination can be found in [1]. This coordination implies an inher-
ent conflict of resources: in path planning the conflict is mostly a space conflict because
the robots move around each other, but it may also be a conflict due to limited communi-
cation channels or a conflict of payload if various robots manipulate the same one. Task
allocation is a problem in itself too, as well as the option of leaving the fleet management
to a centralized authority or allowing every robot to take decisions on their own. It is
considered here that the allocation of goal positions has already been performed and that
the problem consists in coordinating the robots’ simultaneous motion in the workspace.
When managing more than one robot, a solution can consist in applying motion coordi-
nation [2] i.e. coordinating the robots online, as they are moving, to prevent collisions
from occurring. This can be achieved either through a centralized authority sending



2 Benjamin Bouvier and Julien Marzat

commands to the robots (centralized approach) or with the robots communicating with
each other based on their future displacements (decentralized approach). Motion co-
ordination can result in various solutions: (i) a system of traffic rules; (ii) reactive
approaches which can be based on potential fields with attractive forces towards goals
and repulsive ones to stay away from obstacles; (iii) the management of a swarm or
fleet with a common objective. For example, coordinated control approaches have been
previously used for several applications that can be addressed by a fleet of autonomous
aerial or terrestrial robots [3]. To limit computational complexity, the online search of a
model predictive control input for each vehicle can be reduced to a discretized set while
still taking into account the predicted motion of the other robots, as in [4]. However
this strategy can be limited for autonomous robots moving freely in a very cluttered
environment, where in some configurations no feasible solution can be found. This is
why graph-based and sampling-based path planning methods should also be considered
for simultaneous robot coordination [5, 6]. In the latter framework, a simple approach
could consist in considering only the current positions of the other robots when com-
puting the path of each one, but collision avoidance with the other robots is then not
guaranteed. The objective of the present work is to study path planning methods that
can be applied to multiple robots moving simultaneously in the same cluttered envi-
ronment, with an explicit handling of their motion interaction. For this purpose two
decoupled sampling-based path planning algorithms derived from the A* procedure are
described in Section 3, and their performances are evaluated in a Monte Carlo setup with
a combination of map sizes, rate of static obstacles and number of robots (see Section 4).

2 Related Work

Simultaneous motion planning for multiple robots comes with various difficulties, such
as the numerical capacity of planning for a high number of robots or large workspaces,
the consideration of robot dynamics as well as sensing constraints, or the transition
from numerical simulation to real robots experiments [2]. To deal with this variety of
possible issues, several motion planning paradigms have been derived as described in
the reference textbook [5], where in particular algorithms can be classified as either
sampling-based or combinatorial methods. In Sampling-based motion planning, the
idea is to sample the free space to conduct the search for a path relying on a collision
detection module, hence the explicit construction of the obstacle space is avoided. In
Combinatorial motion planning, also referred to as exact methods, paths are computed
in the continuous configuration space without resorting to sampling or discretization.
Two main categories emerge from the literature to address simultaneous path planning,
namely coupled approaches [6–8] and decoupled approaches [8–11]. In coupled plan-
ning, the problem can be seen as handling a single robot which concatenates the states of
the actually different robots. This increases the dimension of the configuration space and
complexity is known to rise exponentially in this number. Classical algorithms may then
fail to find a solution or require too much time (this has been verified in our evaluations,
see Section 4.1). In decoupled path planning, two subcategories can be considered [12]:

1. Robots are treated one by one. For every one of them, a path is calculated considering
all other robots as moving obstacles on top of the already-existing static obstacles.



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 3

Two steps are required, namely: a planning algorithm and a prioritization rule. The
planning algorithm is applied to obtain the path of each robot to its respective goal,
and then prioritization should favor those with the highest cost (depending on time,
distance, energy, etc.). For instance, robots with the least cost could be penalized by
having to bypass or make detours.

2. Each robot has its own path, calculated independently of the others with only the
static obstacles taken into account. Then a coordination diagram should plan the
displacements to avoid collisions. Some authors mention a second phase of velocity
tuning (e.g. in [13]) to coordinate robots in parallel: the relative speed between two
robots can thus be tuned in the portion of path subject to a risk of collision.

Finally, it is possible to build hybrid approaches [12] which rely on both coupled and
decoupled search. The idea is to divide the robots into subgroups depending on their
level of dependency or degree of priority (the constitution of such groups is in itself a
task). For each subgroup, which has a smaller configuration space, a coupled approach
is applied. The groups are treated in a decoupled way with respect to one another. The
authors in [14] proposed a planning algorithm based on satisfiability modulo theory,
where suboptimal paths can be accepted if, in turn, this makes the problem solvable.

Coupled or hybrid approaches however still report computational loads that are
prohibitive for embedded applications for realistic numbers of robots and workspace
dimensions. It has thus been chosen to focus on decoupled planning methods in this
work, since this category of approaches has the capacity of decomposing the problem into
simpler ones, and the literature shows that feasible solutions can be found even when
the number of robots, the workspace dimension or the degrees of freedom increase.
In the context of managing intersections for autonomous vehicles, a priority-based
coordination framework which combines a high-level priority graph with a feedback
control law has been proposed in [15]. Under this framework, the proposed overall
coordination system is proven to be collision-free and deadlock-free. In [16], a prioritized
planning approach has been defined with a formal guarantee to provide a solution
under strict conditions regarding the workspace and the robots initial conditions. An
asynchronous decentralized implementation of this strategy has also been proposed and
demonstrated reliable results via a simulation evaluation on real-world maps. Similar
approaches relying on priority-based planning have also been proposed in [9, 10]. The
main ideas for coordinating the speed of robots having independent goals along pre-
defined paths have been presented in [8]. The so-called coordination diagram based on a
bounding box representation of the obstacles has then been introduced in [17] to tackle
the motion coordination of several robots moving along fixed independent paths while
avoiding mutual collisions. Multi-robot path planning continues to be an active area
of research with many different approaches proposed in the past few years, based e.g.
on reinforcement learning [18, 19], particle swarm optimization [20, 21], graph neural
networks [22] and with the design of novel heuristics [23].

Several decoupled multi-robot coordination strategies have been defined and evalu-
ated in these previous works, relying either on priority-based successive planning or on
velocity adjustment along fixed paths. Two such decoupled algorithms are defined in the
present paper, one from each category, namely Prioritized Planning (PP) and Fixed-Path
Coordination (FPC). They are both derived from the same A* framework with practical



4 Benjamin Bouvier and Julien Marzat

implementations, which are detailed in pseudocodes. This allows to compare fairly the
two approaches in the same simulation setup using extensive Monte-Carlo evaluations on
randomly-defined workspace configurations, and as a result provide recommendations
for the motion coordination of multiple robots having independent goals in cluttered
environments.

3 Planning Algorithms

3.1 Problem formulation

The problem is illustrated in Figure 1. A two-dimensional workspace 𝑊 = R2 is con-
sidered (but the methods can easily generalize to higher-dimension workspaces). This
workspace can be separated into two parts: a first part where robots are free to move,
𝐶 𝑓 𝑟𝑒𝑒, and a second one occupied by static obstacles, 𝐶𝑜𝑏𝑠, where robots are not al-
lowed to drive. A robot 𝐴 can undergo various transformations which result in reaching
a particular configuration 𝑞 ∈ 𝑊 . An obstacle-free configuration such that 𝑞 ∈ 𝐶 𝑓 𝑟𝑒𝑒 is
considered valid, while a collision configuration 𝑞 ∈ 𝐶𝑜𝑏𝑠 is invalid. Let us now con-
sider we have 𝑚 robots, 𝑚 ∈ ⟦2;+∞⟦. Every robot 𝐴𝑖 , 𝑖 ∈ ⟦1;𝑚⟧, is assigned an initial
configuration, 𝑞𝑖

𝐼
, and a final configuration or goal, 𝑞𝑖

𝐺
, defined in𝐶 𝑓 𝑟𝑒𝑒. Contrary to the

single-robot case where it is sufficient to consider robot-obstacle collisions, robot-robot
collisions should be taken into account. Robots are moving with respect to each other,
therefore a given robot 𝐴𝑖 should consider all the other robots 𝐴 𝑗 , 𝑗 ≠ 𝑖, as moving
obstacles. The set of configurations such that robot 𝐴𝑖 collides with robot 𝐴 𝑗 , 𝑗 ≠ 𝑖, is
defined as 𝐶𝑖, 𝑗

𝑚𝑜𝑣 𝑜𝑏𝑠
.

Fig. 1: Multiple robots path planning: robots 𝐴1 and 𝐴2 drive from their initial to final
configurations while avoiding two static obstacles and ensuring they do not collide.

The path planning problem consists in finding, for every robot 𝐴𝑖 , a continuous path
𝜏𝑖 :

{
[0; 1] → 𝐶 𝑓 𝑟𝑒𝑒 ; 𝑠 ↦→ 𝜏𝑖 (𝑠)

}
where 𝑠 parameterizes the path such that 𝜏(0) = 𝑞𝑖

𝐼

and 𝜏(1) = 𝑞𝑖
𝐺

, and with an empty intersection with both 𝐶𝑜𝑏𝑠 and 𝐶𝑖, 𝑗

𝑚𝑜𝑣 𝑜𝑏𝑠
for all

𝑗 ≠ 𝑖. The notion of moving obstacles requires to have a parameter that can be used to
determine where a given robot is located at some instant. If all robots have the same
speed, the cumulative distance could be used and 𝑠 would be sufficient. However, for
robots with different speeds 𝑣𝑖 , time should be considered explicitly in the problem
definition. Therefore, a date is associated to every configuration of the path. Instead of



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 5

looking for the parameterized path 𝜏𝑖 defined previously, we now look for a trajectory
𝜙𝑖 = 𝜏𝑖 ◦ 𝜎𝑖 considering a timing function defined as 𝜎𝑖 : {𝑇 → [0; 1] ; 𝑡 ↦→ 𝑠}, where
𝑡 denotes time.

3.2 Decoupled Prioritized Planning (PP)

The first algorithm is a decoupled two-dimensional algorithm derived from A* using
prioritization to sequentially obtain the path of every robot without collisions. The
method requires that the 𝑚 robots have been ranked from highest to lowest priority.
For the first one, 𝐴1, a standard A* path is calculated from its initial position to its
goal position, taking into account the static obstacles present in the workspace. Then,
the second robot is treated: besides static obstacles, 𝐴2 has to consider the previously
computed motion of robot 𝐴1 along its path with a given constant speed 𝑣1. In case of
collision with 𝐴1 at a given node, 𝐴2 will have to reach another configuration, therefore
bypassing 𝐴1 which has priority. This procedure is applied iteratively for the next robots
until all have been treated. The idea is illustrated in Figure 2. In this algorithm, every
robot is assumed to drive at its own constant nonzero speed, meaning that a robot is
unable to stop. All it can do is bypass, which requires to have sufficient free space around
the static and moving obstacles.

Fig. 2: PP Algorithm: 𝐴2’s path is obtained by bypassing the higher-priority robot 𝐴1.

Each robot is assigned a vector of dates associated to its A* path, given its nominal
velocity 𝑣𝑖 specified by the user. For robot 𝐴𝑖 , it will allow to interpolate the positions
of all higher-priority robots 𝐴 𝑗 , 1 ≤ 𝑗 < 𝑖, to detect possible collisions. Collisions are
defined as follows: the current robot 𝐴𝑖 is considered as a point, while all the robots
with higher priorities 𝐴 𝑗 , 1 ≤ 𝑗 < 𝑖, are considered to occupy a disk of parameterized
safety radius centered at the robot position at the current date. If 𝐴𝑖 finds itself inside
or on the outer circle of any disk representing 𝐴 𝑗 , a collision is detected and the
corresponding node is declared unfeasible. The pseudocode of the algorithm is given
in Algorithm 1. It globally consists in a loop with a modified A* procedure applied for
each robot (modifications are indicated in blue). The dates in the list 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 (which
is of same length as the heuristic scores 𝑔𝑠𝑐𝑜𝑟𝑒𝑠) are defined for the nodes present
either in the 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 (which progressively contains the path) or in the 𝑜𝑝𝑒𝑛𝑆𝑒𝑡
(which contains nodes considered to be part of the path but eventually not selected).
The considered heuristic dist(𝑛𝑏𝑔, 𝑛) is based on the Euclidean distance. In the end, a
trajectory (𝑝𝑎𝑡ℎ𝑖; 𝑑𝑎𝑡𝑒𝑠𝑖) is obtained for each robot 𝑖. If the 𝑤ℎ𝑖𝑙𝑒 loop is exited with
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑓 𝑎𝑙𝑠𝑒, the path is extracted from the node of minimal heuristic value instead
of 𝑞𝑖

𝐺
, therefore an incomplete path is obtained to determine how far the robot can go

before having to stop.



6 Benjamin Bouvier and Julien Marzat

The core of the multi-robot layer lies in the robot-robot collision detection. When
managing static obstacles, it is sufficient and straightforward to check if the intended
configuration is inside or outside 𝐶𝑜𝑏𝑠 . When it comes to moving obstacles (higher-
priority robots), one has to consider the relative speed between the robot and the obstacle
as well as the obstacle width. Collision checks are performed every 𝑑𝑇 seconds, given
the relative speed vector and the obstacle width. When moving from a current node
position 𝑛 to the intended one 𝑛𝑔𝑏, the robot does not change its direction but the
moving obstacle might. As a consequence, care should be taken in selecting the dates
and in calculating the relative speed vector. Moreover, collision checks are performed
with all robots of higher priority (the sweeping is nevertheless stopped when a collision
is detected because one is sufficient). All these additional calculations can be costly so
they are run only if a static obstacle has not already been detected. Finally, a post-check
is conducted on the obtained paths and dates such that the coordination is considered to
have failed in the particular case where a lower-priority robot has reached its destination
and is blocking the path of a higher-priority robot.

1 foreach robot 𝑖 ∈ ⟦1;𝑚⟧ [ranked from highest to lowest priority] do
2 Initialize 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 to empty and 𝑜𝑝𝑒𝑛𝑆𝑒𝑡 to the node containing 𝑞𝑖

𝐼
;

3 Initialize lists 𝑔𝑠𝑐𝑜𝑟𝑒𝑠 (cumulated distances from 𝑞𝑖
𝐼
) and 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 (time instants);

while 𝑜𝑝𝑒𝑛𝑆𝑒𝑡 not empty do
4 Find node 𝑛 in 𝑜𝑝𝑒𝑛𝑆𝑒𝑡 with minimal heuristic value 𝑚ℎ𝑣;
5 if 𝑚ℎ𝑣 = ∞ then Assign 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 B false; Break Loop; end;
6 if 𝑛 = 𝑞𝑖

𝐺
then Assign 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 B true; Break Loop; end;

7 Add 𝑛 in 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡; Remove 𝑛 from 𝑜𝑝𝑒𝑛𝑆𝑒𝑡;
8 for all neighbors 𝑛𝑔𝑏 of "𝑛" inside the workspace do
9 if 𝑛𝑔𝑏 ∉ 𝑐𝑙𝑜𝑠𝑒𝑑𝑆𝑒𝑡 then

10 Compute candidate cost 𝑎𝑙𝑡 B 𝑔𝑠𝑐𝑜𝑟𝑒𝑠 (𝑛) + dist(𝑛𝑔𝑏, 𝑛);
11 if "𝑛𝑔𝑏" collides with a static obstacle or with previous robots on

{𝑝𝑎𝑡ℎ 𝑗 , 𝑑𝑎𝑡𝑒𝑠 𝑗 ,∀ 𝑗 < 𝑖} then
12 𝑎𝑙𝑡 B ∞;
13 end
14 if 𝑎𝑙𝑡 < 𝑔𝑠𝑐𝑜𝑟𝑒𝑠 (𝑛𝑔𝑏) then Update 𝑔𝑠𝑐𝑜𝑟𝑒𝑠 , 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐 end;
15 end
16 end
17 end
18 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 then
19 Get full 𝑝𝑎𝑡ℎ𝑖 from start 𝑞𝑖

𝐼
to goal 𝑞𝑖

𝐺
and vector 𝑑𝑎𝑡𝑒𝑠𝑖 from 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐;

20 else
21 Get incomplete 𝑝𝑎𝑡ℎ𝑖 and vector 𝑑𝑎𝑡𝑒𝑠𝑖 from start to best reachable node;
22 end
23 Return 𝑝𝑎𝑡ℎ𝑖 and 𝑑𝑎𝑡𝑒𝑠𝑖 ;
24 end

Algorithm 1: Prioritized Planning (PP) pseudocode



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 7

3.3 Decoupled Fixed-Path Coordination (FPC)

The second algorithm is also decoupled, two-dimensional and A*-based. It differs from
the PP algorithm in that it allows robots to stop on their paths and resume their motions.
Therefore, robot-robot collisions are not avoided by bypassing but simply by stopping
and starting again (see Figure 3a), which is one possible choice for modulating the robot
velocities along their trajectories [5].

(a) Principle of FPC Algorithm (b) Motion command

Fig. 3: 𝐴2’s trajectory is obtained by pausing until higher-priority robot 𝐴1 has gone by.

First, an A* path is obtained independently for each of the 𝑚 robots by considering
static obstacles only (referred to as single-robot planning). The input requirements are
the same as the previous algorithm: the robots should be ranked from highest to lowest
priority and each is assigned a nominal velocity 𝑣𝑖 . A speed profile is then initialized for
each robot along the A* paths. The next step consists in tuning these velocity profiles
to ensure collision-free paths, which is achieved by inserting pauses every time a robot-
robot collision is detected. Note that these breaks can be inserted anywhere in the path,
which means not necessarily on the nodes of the A* grid. If a collision is detected (with
the same mechanism as in PP), the robot with the lowest priority will pause as long
as necessary for the higher-priority robots to go past. Another less conservative option
would be to optimize the robot motions given some global criterion to select which robot
should stop for given collision conditions, which might result in different prioritization
rules for similar collision configurations at different time instants.

In the PP algorithm, a list of dates has been added as additional information to handle
collision-checking. The same applies in this second algorithm, with the addition of a
binary motion command state associated to each date, to determine if the robot is driving
or waiting (see Figure 3b). Another difference with Algorithm 1 is the calculation of 𝑑𝑇 .
In PP it is calculated from the relative speed vector between two given robots at a certain
date, while a unique 𝑑𝑇 is now used in FPC for all couples of robots on the basis of the
highest possible relative speed. The pseudocode is given in Algorithm 2. Every time a
collision is detected, a pause is inserted, which requires to check again the collisions of
all pairs of robots at the date of collision, in case the pause insertion would induce a
collision that did not exist before. Also, when two robots are moving exactly in opposite
directions, that stop may need to be inserted several times 𝑑𝑇 before the collision date,
which requires going backwards in time to check all pairs and can turn out to be costly.
Although not explicit in Algorithm 2, the main 𝑤ℎ𝑖𝑙𝑒 loop (line 7) can be interrupted



8 Benjamin Bouvier and Julien Marzat

on a maximum number of collision checks in the sub-routines, which indicates a likely
absence of solution and is thus considered as a failure to find coordinated paths.

1 for all robots 𝑖 ∈ ⟦1;𝑚⟧ do
2 get A* 𝑝𝑎𝑡ℎ𝑖 (with static obstacles only), initial 𝑑𝑎𝑡𝑒𝑠𝑖 and 𝑚𝑜𝑡𝑖𝑜𝑛𝑖 vectors;
3 end
4 𝑇𝑚𝑎𝑥 B maximum final date among all robots;
5 Calculate 𝑑𝑇 given nominal speeds 𝑣𝑖 , 𝑖 ∈ ⟦1, 𝑚⟧ ;
6 Initialize 𝐾 B ceil(𝑇𝑚𝑎𝑥/𝑑𝑇) and time index 𝑘 ← 1;
7 while 𝑘 ≤ 𝐾 do
8 Initialize boolean 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 with value 𝑡𝑟𝑢𝑒;
9 Initialize integer 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 with value 𝑘;

10 while 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 do
11 Set 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0;
12 for robot 𝑟 from 1 to 𝑚 − 1 [loop over priority robots] do
13 for robot 𝑠 from 𝑟 to 𝑚 [loop over subordinate robots] do
14 if robot ’𝑠’ collides with robot ’𝑟’ then
15 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;
16 Insert a stop at last date 𝑑𝑠𝑡𝑜𝑝 when a motion command had been

applied before the collision, and update 𝑑𝑎𝑡𝑒𝑠𝑠 and 𝑚𝑜𝑡𝑖𝑜𝑛𝑠 ;
17 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← min

{
𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒; ceil

(
𝑑𝑠𝑡𝑜𝑝/𝑑𝑇

)}
;

18 if final date of robot ’𝑠’ > final date of all other robots then
19 𝐾 ← 𝐾 + 1;
20 end
21 end
22 end
23 end
24 if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0 then 𝑎𝑛𝑦_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 B 𝑓 𝑎𝑙𝑠𝑒;
25 end
26 end
27 if 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 < 𝑘 then
28 𝑘 ← 𝑘_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒; [start over the collision check in the subinterval containing

or ending by the smallest 𝑑𝑠𝑡𝑜𝑝 used in the latest collision while loop]
29 else
30 𝑘 ← 𝑘 + 1 [go to next time subinterval];
31 end
32 end
33 For all robots 𝑖 ∈ ⟦1;𝑚⟧, return 𝑑𝑎𝑡𝑒𝑠𝑖 , 𝑚𝑜𝑡𝑖𝑜𝑛𝑖 (𝑝𝑎𝑡ℎ𝑖 is fixed by design);

Algorithm 2: Fixed-Path Coordination (FPC) pseudocode

4 Numerical Experiments

Extensive simulations have been run based on the following setup. The workspace is a
bounded subset of R2 with translational degrees of freedom. As shown in Figure 4a, the
free space is sampled at regularly-spaced points (in green) which form a grid with at
most eight neighbors per node. Robots move along the edges with the aim of traveling
from their starting positions (black) to their final ones (red). The number indicated next
to every node is the date at which the robot reaches the corresponding position.



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 9

(a) map example with A* planning of 𝐴1 (b) PP algorithm result

(c) FPC algorithm result

0 10 20 30 40 50 60 70 80

date [s]

0

0.5

1
robot no.1 - motion command

0 20 40 60 80 100 120 140

date [s]

0

0.5

1
robot no.2 - motion command

0 20 40 60 80 100 120

date [s]

0

0.5

1
robot no.3 - motion command

(d) FPC motion commands

Fig. 4: Illustrative test case with 3 robots successfully solved by PP (b) and FPC (c-d).
Arrival times are indicated around the nodes and motion command profiles (d) show the
stop-and-go behaviour of FPC.

4.1 Illustrative test cases

Coupled planning A coupled A∗ strategy has been considered as a baseline, where all
the positions of the robots in the fleet were aggregated into a single state vector. However
the combinatorial complexity grows exponentially with the number of nodes and the
number of robots, making it impractical for the simultaneous path planning of teams
with more than two or three robots. This has been verified on a simple example with
around 100 nodes where computing the paths takes a few milliseconds for one robot,
several seconds for two robots, and several hours for three robots. Therefore, the focus
has been put on the comparison of the proposed decoupled algorithms.



10 Benjamin Bouvier and Julien Marzat

Decoupled methods As an illustrative example, a simple test case for three robots
with different velocities is presented in Figures 4b to 4d. Both decoupled algorithms are
successful in coordinating the three agents. With PP, robot 𝐴2 finds an alternative node
to avoid a collision with 𝐴1 at node (45; 25). With FPC, robots 𝐴2 and 𝐴3 stop once
and twice respectively, increasing their motion duration by 16 and 89% compared to the
constant-speed travel time of the initial independent A* paths.

4.2 Monte Carlo simulations

In order to evaluate and compare the algorithms performances, a Monte Carlo simulation
was set up. It consisted in (i) creating random scenarios (following uniform distributions)
as two-dimensional maps with randomly-placed static obstacles and random initial
and final configurations of robots and (ii) applying the two algorithms. The following
parameters are selected for each experiment: (a) a number of nodes (related to the map
size), (b) a rate of static obstacles and (c) a number of robots. The static obstacles are
placed so that a particular percentage of the map (called occupancy rate) is covered
with them, e.g. 10% means that 10% of the nodes are occupied by static obstacles. Even
though both algorithms allow the robots to have different nominal speeds, they were
all set to the same value in these evaluations for a fair comparison since path lengths
and travel times are handled differently by PP and FPC. Two values were respectively
chosen for the map size (about 103 and 104 nodes), the occupancy rate (10 and 30%) and
the number of robots (5 and 10), and all eight combinations evaluated. Any map where
single-robot A* planning failed was dismissed, since that means at least one destination
cannot be reached. The expression single-robot planning refers to the superposition of
the paths obtained for every robot considering only the static obstacles and ignoring the
other agents. Two main metrics were computed for all the test cases and algorithms: the
success rate and the increase of travel duration with respect to the single-robot reference
(see Table 1).

Table 1: Monte-Carlo comparison (mean results on 1000 runs) for PP and FPC algorithms
Number of Nodes 9.102 104

Occupancy Rate 10% 30% 10% 30%

Number of Robots 5 10 5 10 5 10 5 10

Single-robot success rate (%) 72 22 57 9.3 90 64 86 49
Multi-robot

success rate (%)
(single-robot failures)

PP 89 75 86 64 90 85 96 86

FPC 75 62 74 51 81 80 80 77

Travel duration
increase (%)

PP 1.4 1.6 6.1 5.4 0.75 0.34 0.80 0.71

FPC 45 41 48 57 18 33 32 34



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 11

PP planning success on single-robot failures

10 30

occupancy rate [%]

0

20

40

60

80

100
av

er
ag

e 
p

la
n

n
in

g
 s

u
cc

es
s 

[%
]

900 nodes | 5 robots

104 nodes | 5 robots
900 nodes | 10 robots

104 nodes | 10 robots

FPC planning success on single-robot failures

10 30

occupancy rate [%]

0

20

40

60

80

100

av
er

ag
e 

p
la

n
n

in
g

 s
u

cc
es

s 
[%

]

Fig. 5: PP and FPC success rates show little dependency on occupancy rate

Rate of planning success Single-robot success refers to cases where independent
single-robot planning happens to generate no collisions with constant-speed travel. As
can be seen in Table 1 (line 1), the success rates ranging from 10 to 90% decrease
by 4 to 15 points when the occupancy rate is tripled and by 26 to 67 points when the
number of robots is doubled. Available nodes become progressively less numerous so the
probability of path overlap and/or crowded areas rises, which produces more collisions.
On the contrary, growing the number of nodes has a positive impact on the success rate
because more free space becomes available: paths are less likely to overlap and, even if
they do, robots are less likely to take these common portions at the same dates.

Considering now the cases where single-robot planning fails and multi-robot plan-
ning becomes necessary, we may compare the efficiency of PP and FPC (lines 2-3 in
Table 1, also shown in Figure 5). It should be noted that this metric is calculated only on
the subset of single-robot failures. PP has a success rate between 64 and 96% and FPC
from 51 to 81%. PP always performs better than FPC because FPC fails when an initial
or final position is on another robot’s path. A goal position acts as an additional static
obstacle from the perspective of a lower-priority robot; an initial position is also seen
as a static obstacle but by a higher-priority robot because this is the only position that
cannot be freed by holding up the robot somewhere else in the map. In a nutshell, FPC
handles path overlaps less efficiently. A check on initial and final positions as well as
priority reordering could help avoiding such cases. Finally, the number of nodes has a
positive impact on the planning status because it offers more possibilities for PP to find
alternative paths and because FPC is less affected by the previously described issues.

Travel duration increase It is worth reminding the difference between PP and FPC path
alteration. PP will change portions of paths to bypass higher-priority robots while driving
continuously so both travel duration and distance may increase. FPC, however, can make
smaller-priority robots wait but cannot make them divert from single-robot paths, which
means distance remains unchanged. This is why Table 1 only mentions travel duration
increase. Path lengthening would be zero for FPC and equal to duration increase for PP
because all speeds are equal. The metric is computed only on multi-robot configurations
for which the paths were successfully modified by the corresponding algorithm. The
results show that FPC delays the robots much more than PP, with 18 to 57% of time



12 Benjamin Bouvier and Julien Marzat

increase on average compared to less than 6.1% for the smaller map and always less
than 1% on the bigger one. In many cases, bypassing a robot has a limited impact on
arrival time because various slightly different paths (and sometimes ones of exact same
length) lead to the goal. If two robots drive in opposite directions, one may simply shift
to a parallel lane with PP whereas in FPC the smaller-priority agent will have to stop to
give way.

5 Conclusion

Two path planning algorithms dedicated to multiple robots driving simultaneously in a
cluttered workspace have been defined as variations of A* procedures and compared in
this paper. Both are based on a predefined order of priority and assumptions of constant
nominal velocities. The first one named Prioritized Planning (PP) consists in bypassing
higher-priority agents while continuously driving. The second one named Fixed-Path
Coordination (FPC) handles collision risks along fixed paths by inserting pauses in
order to let higher-priority robots move past. The Monte Carlo simulation setup showed
that directly superimposing single-robot planning paths can be successful in a number
of configurations with limited occupancy rates and fleet sizes. This could thus be a
first step when addressing a multi-robot coordination problem, where the new strategies
can then be called upon when this straightforward approach has failed. PP showed good
performances thanks to its flexibility in adapting the paths by following alternative nodes.
Satisfactory success rates and very limited travel duration and distance increases were
obtained. The proposed FPC version proved less efficient because of the incapacity of
diverting from the initial single-robot paths. This strategy may only prove more efficient
in extremely cluttered environments where alternative nodes would be harder to find
for PP. Most of the FPC failed cases were due to initial and final positions conflicts, as
they may prevent other robots from reaching their goals. Moreover, although distance
remains minimal with FPC, travel duration grows significantly more than with PP. Free
space sampling maximization is of interest to improve the success rate of both single-
and multi-robot algorithms.

Future work directions include the evaluation of priority shuffles for both PP and
FPC algorithms and their extension to higher-dimensional workspaces, which will allow
to handle heterogeneous teams of robots. Additional comparison criteria can also be
considered, such as energy efficiency. Finally, the deployment on embedded computers
of real-world robots and the interaction with actual perception and control modules
would also make it possible to estimate the computational load and performances in full
autonomy loops on the field.

Acknowledgement This work was supported by ONERA project PR PARADIS.

References

1. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination.
International Journal of Advanced Robotic Systems 10(12), 399 (2013)

2. Parker, L.E.: Path planning and motion coordination in multiple mobile robot teams. Ency-
clopedia of complexity and system science pp. 5783–5800 (2009)



Comparison of Decoupled Methods for Simultaneous Multiple Robots Path Planning 13

3. Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision-free navigation of mobile
robots in complex cluttered environments: a survey. Robotica 33(3), 463–497 (2015)

4. Bertrand, S., Marzat, J., Piet-Lahanier, H., Kahn, A., Rochefort, Y.: MPC strategies for
cooperative guidance of autonomous vehicles. AerospaceLab Journal (8), 1–18 (2014)

5. LaValle, S.M.: Planning algorithms. Cambridge university press (2006)
6. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and

autonomous systems 23(3), 125–152 (1998)
7. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: 2013 IEEE

International Conference on Robotics and Automation. pp. 3612–3617. IEEE (2013)
8. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having inde-

pendent goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (1998)
9. Van Den Berg, J.P., Overmars, M.H.: Prioritized motion planning for multiple robots. In:

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 430–435.
IEEE (2005)

10. Zheng, T., Liu, D., Wang, P.: Priority based dynamic multiple robot path planning. In: Inter-
national Conference on Autonomous Robots and Agents. Massey University, New Zealand
(2004)

11. Kala, R.: Rapidly exploring random graphs: motion planning of multiple mobile robots.
Advanced Robotics 27(14), 1113–1122 (2013)

12. van Den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple
robots: Optimal decoupling into sequential plans. In: Robotics: Science and systems. vol. 2,
pp. 2–3 (2009)

13. Sánchez, G., Latombe, J.C.: On delaying collision checking in PRM planning: Application to
multi-robot coordination. The International Journal of Robotics Research 21(1), 5–26 (2002)

14. Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Implan: Scalable in-
cremental motion planning for multi-robot systems. In: 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS). pp. 1–10. IEEE (2016)

15. Gregoire, J.: Priority-based coordination of mobile robots. Ph.D. thesis, Ecole Nationale
Supérieure des Mines de Paris (2014)

16. Čáp, M., Novák, P., Kleiner, A., Seleckỳ, M.: Prioritized planning algorithms for trajectory
coordination of multiple mobile robots. IEEE Transactions on Automation Science and
Engineering 12(3), 835–849 (2015)

17. Siméon, T., Leroy, S., Lauumond, J.P.: Path coordination for multiple mobile robots: A
resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18(1), 42–
49 (2002)

18. Bae, H., Kim, G., Kim, J., Qian, D., Lee, S.: Multi-robot path planning method using
reinforcement learning. Applied sciences 9(15) (2019)

19. Wen, S., Wen, Z., Zhang, D., Zhang, H., Wang, T.: A multi-robot path-planning algorithm
for autonomous navigation using meta-reinforcement learning based on transfer learning.
Applied Soft Computing 110 (2021)

20. Das, P.K., Jena, P.K.: Multi-robot path planning using improved particle swarm optimization
algorithm through novel evolutionary operators. Applied Soft Computing 92 (2020)

21. Tang, B., Xiang, K., Pang, M., Zhanxia, Z.: Multi-robot path planning using an improved self-
adaptive particle swarm optimization. International Journal of Advanced Robotic Systems
17(5) (2020)

22. Li, Q., Gama, F., Ribeiro, A., Prorok, A.: Graph neural networks for decentralized multi-robot
path planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 11785–11792 (2020)

23. Han, S.D., Yu, J.: Effective heuristics for multi-robot path planning in warehouse environ-
ments. In: IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS).
pp. 10–12 (2019)


