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Abstract— Many repetitive control problems are character-
ized by the fact that disturbances have the same effect in each
successive execution of the same control task. Such disturbances
comprise the lumped representation of unmodeled parts of the
open-loop system dynamics, a systematic model-mismatch or,
more generally, deterministic yet unknown uncertainty. In such
cases, well-known strategies for iterative learning control are
based on enhancing the system behavior not only by exploiting
data gathered during a single execution of the task but also
using information from previous executions. The corresponding
dual problem, namely, iterative learning state and disturbance
estimation has not yet received the same amount of attention.
However, it is obvious that improved estimates for the aforemen-
tioned states and disturbances which periodically occur in each
execution will be a means to achieve an improved accuracy and,
therefore, in future work also to optimize the control accuracy.
In this paper, we present a joint design procedure for observer
gains in two independent dimensions, a gain for processing
information in the temporal domain during a single execution
of the task (also named trial) and a gain for learning in the
iteration domain (i.e., from trial to trial).

I. INTRODUCTION

Two-dimensional (2D) systems with the time domain and
the iteration domain as two independent dimensions have
been widely used in the last decades to derive iterative learn-
ing control (ILC) procedures [1]–[3]. Such approaches can
be applied effectively for enhancing the control accuracy of
repetitive tasks that are characterized by identical reference
trajectories of finite length during each successive execution
of a control task, where before the restart of the execution
a reset to (nearly) the same initial conditions takes place.
Such tasks occur widely in pick and place operations of
manufacturing processes as well as during welding executed
by robots. They can also be found in other areas such as
rehabilitation or the control of wind power plants. ILC has
the unique feature that it does not only exploit past data
that are classically available in control tasks from the current
execution of the task under consideration. In addition, it also
exploits information from previous evaluations and is hence
able to outperform control implementations that only exploit
current trial data. By using information from one or multiple
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previous trials, control structures can be implemented which
classically would even be acausal.

The dual task of iterative learning observer (ILO) synthe-
sis [4] has not yet achieved the same amount of attention.
Related work can be found in [5], where a Kalman Filter
(KF) [6] like ILO procedure is derived for the time and
iteration domains. However, the drawback of the approach
proposed in [5] is its suboptimality because both independent
domains are treated separately. This problem was removed by
deriving a linear matrix inequality (LMI) design approach for
a learning-based observer for linear discrete-time dynamics
with uncertain temporally varying parameters in [7]. The
structure of this observer is motivated by the work of [8].
It yields point-valued state as well as disturbance estimates
and includes a strategy for identifying a constant, but not
perfectly known initial system state. For nonlinear applica-
tions, data-driven learning observer approaches were derived
in [9], [10]. Recently, a related topic in the frame of an
interval observer design for 2D systems described in the
form of the Fornasini-Marchesini second model was derived
in [11], where the focus was on evaluating and verifying
stability criteria in the form of LMIs in combination with the
optimization of the peak-to-peak norm to reduce the effects
of measurement errors on the state estimates.

In this paper, we focus on deriving a novel stochastic
ILO approach for linear time-varying system models, which
aims at minimizing (as in the case of a classical KF)
the estimation error covariance. In contrast to the existing
work in [5], we do not search for a suboptimal solution
by computing the observer gains in the time and iteration
domains independently but rather compute them jointly with
the help of a closed-form expression. For that purpose,
it is only required to specify the discrete-time state-space
representation of the system under consideration together
with the physically motivated covariance matrices of process
and sensor noise.

This paper is structured as follows. In Sec. II, we describe
the problem formulation of ILO design for linear discrete-
time, time-varying system models. Sec. III proposes the
closed-form solution of the observer design problem before
simulation results are presented for a close-to-life battery
model in Sec. IV. Finally, conclusions and an outlook on
future work can be found in Sec. V.

Notation: Throughout this paper, I and 0 denote identity
and zero matrices of appropriate dimensions; tr(A) is the
trace (sum of diagonal elements) of a square matrix; k ∈
{0, . . . ,kmax} denotes the discrete time index and i ∈N0 is a
non-negative integer counter for the iteration (trial) number;



the symbol ⋆ indicates blocks in symmetric matrices that can
be inferred from the remaining elements by a transposition.

II. PROBLEM FORMULATION

Consider the linear discrete-time state-space representation

xk+1 = Ak ·xk +Ek ·wk

yk = Ck ·xk +vk
(1)

with the state vector xk ∈ Rn, the potentially time-varying
system, disturbance input, and output matrices Ak, Ek, and
Ck, respectively, and process and measurement noise vectors
wk and vk, which are both assumed to be normally distributed
with the covariances Cw,k and Cv,k and vanishing mean. The
goal of this paper is to estimate the state vector as well as its
uncertainty by a KF-like procedure that does not only operate
along the time domain k but also enhances the estimates over
subsequent evaluations of the system model, i.e., from the
trial i to the trial i+1, by considering a lumped correction
term δδδ k added to the state equations in the form

xk+1 = Ak ·xk +Ek ·wk +δδδ k (2)

so that the deterministic mismatch of the dynamics repre-
sented by the model (1) and the real-life system behavior
can be approximated. This model mismatch is estimated on
the basis of the actually measured data yξ

m,k = Cξ

k · x
ξ

k + vξ

k
during the trials ξ = i and ξ = i+1, denoting the realizations
of the general system output yk in (1). In such a way, the
estimate for the temporal evolution of δδδ k is refined before
starting the next trial.

Remark: As in the case of a classical Extended Kalman
Filter (EKF), the system model (1) can represent a time-
varying and/or quasi-linear or linearized system model in
the form

xk+1 = Ak (x̃k) ·xk +Ek (x̃k) ·wk

yk = C(x̃k) ·xk +vk ,
(3)

where x̃k represents the most recent state estimate, so that
Ak := Ak (x̃k), Ek := Ek (x̃k), and Ck := Ck (x̃k) hold.

Remark: In the system models (1) and (3), control inputs
are not explicitly included. However, if a system is actually
non-autonomous, and the inputs are known exactly, the
design procedure presented in the following section with its
gain computation remains unchanged because all covariance
matrices are independent of this system input. This is in full
analogy to the case of a classical KF design which only
operates along the time domain and would not make use of
the trial-to-trial update presented in this paper.

III. DESIGN OF THE STOCHASTIC ILO SCHEME

As already mentioned in the previous section, we assume
in this paper that process and measurement noise are uncor-
related and normally distributed with zero mean. In all of
the following equations, the superscript p denotes the result
of the prediction step, while the superscript e refers to the
estimation result as the outcome of the measurement-based
innovation step.

A. Prediction Step

The ILO design is essentially based on the standard
detectability requirement known from the KF synthesis. If
this is satisfied, assume that two gain matrices Hi+1

1,k and
Hi+1

2,k are included in the observer, where the first one serves
as a KF-like stabilization along the trial and the latter allows
for reducing estimation errors between two subsequent trials.
As a general index convention, use the index i to denote
the old trial for which the state estimation has already been
performed previously and i+1 denotes the current trial. To
design the gains for the trial i + 1, an augmented system
model containing the models for the i-th and (i+1)-st trials
is defined. Using this model, the expected values are updated
in the prediction step by means of[

µµµ
p,i
k+1

µµµ
p,i+1
k+1

]
=

[
Ai

k 0
0 Ai+1

k

]
·

[
µµµ

e,i
k

µµµ
e,i+1
k

]
, (4)

where Ai
k := Ak

(
µµµ

e,i
k

)
and Ai+1

k := Ak

(
µµµ

e,i+1
k

)
are the

system matrices evaluated for the most recent estimation
results µµµ

e,i
k and µµµ

e,i+1
k , respectively, that are both recomputed

during the trial i+ 1. This kind of evaluation of the sys-
tem matrices allows for treating linearized and quasi-linear
formulations in an EKF-like manner. In full analogy to the
system matrices above, the disturbance input matrices are
defined as Ei

k := Ek

(
µµµ

e,i
k

)
and Ei+1

k := Ek

(
µµµ

e,i+1
k

)
. With

their help, the covariance prediction yields

Cp,i|i+1
k+1 =

[
Ai

k 0
0 Ai+1

k

]
·Ce,i|i+1

k ·
[

Ai
k 0

0 Ai+1
k

]T

+

[
Ei

k 0
0 Ei+1

k

]
·
[

Cw,k 0
0 Cw,k

]
·
[

Ei
k 0

0 Ei+1
k

]T

.

(5)

B. Innovation Step

The measurement-based innovation step makes use of the
deviations

∆yi
k = yi

m,k −Ci
k ·µµµ

p,i
k and (6)

∆yi+1
k = yi+1

m,k −Ci+1
k ·µµµ

p,i+1
k (7)

between the measured data in the trials i and i+1, respec-
tively, and the corresponding output forecasts based on the
prediction step of the previous subsection. Using these output
deviations, the expected values are updated by[

µµµ
e,i
k

µµµ
e,i+1
k

]
=

[
µµµ

p,i
k

µµµ
p,i+1
k

]
+

[
Hi+1

1,k ·∆yi
k

Hi+1
1,k ·∆yi+1

k +Hi+1
2,k ·

(
∆yi

k −∆yi+1
k

)]

=

[
µµµ

p,i
k

µµµ
p,i+1
k

]
+ H̃k ·

[
yi

m,k
yi+1

m,k

]
− H̃kC̃k ·

[
µµµ

p,i
k

µµµ
p,i+1
k

]
(8)

and the corresponding estimation error covariance [12] by

Ce,i|i+1
k = E


[

xi
k −µµµ

e,i
k

xi+1
k −µµµ

e,i+1
k

]
·

[
xi

k −µµµ
e,i
k

xi+1
k −µµµ

e,i+1
k

]T


= Cov

{[
xi

k −µµµ
e,i
k

xi+1
k −µµµ

e,i+1
k

]}



= Cov

{([
I 0
0 I

]
− H̃kC̃k

)
·

[
xi

k −µµµ
p,i
k

xi+1
k −µµµ

p,i+1
k

]
− H̃k ·

[
vi

k
vi+1

k

]}
= MkCp,i|i+1

k MT
k + H̃kC̃v,kH̃T

k , (9)

where
Mk =

[
I 0
0 I

]
− H̃kC̃k . (10)

In these expressions, the following notation is used:
• Combined output matrix

C̃k :=
[

Ci
k 0

0 Ci+1
k

]
(11)

with Ci
k := Ck

(
µµµ

p,i
k

)
and Ci+1

k := Ck

(
µµµ

p,i+1
k

)
;

• Augmented filter gain matrix

H̃k :=

[
Hi+1

1,k 0
Hi+1

2,k Hi+1
1,k −Hi+1

2,k

]
; (12)

• Augmented, trial-independent measurement noise co-
variance

C̃v,k :=
[

Cv,k 0
0 Cv,k

]
; (13)

• Block partitioning of the predicted covariance

Cp,i|i+1
k =

[
Cp

A,k Cp
B,k

⋆ Cp
C,k

]
; (14)

• Block partitioning of the residual covariance

C̃kCp,i|i+1
k C̃T

k + C̃v,k =

[
CA,k CB,k
⋆ CC,k

]
(15)

for the augmented system with

CA,k = Ci
kCp

A,kCi
k

T
+Cv,k ,

CB,k = Ci
kCp

B,kCi+1
k

T
, and

CC,k = Ci+1
k Cp

C,kCi+1
k

T
+Cv,k .

(16)

Remark: Cross-correlations between the trials i and i+1
due to the stochastic noise are neglected in the following
theorem.

Theorem 3.1 (Optimal ILO gain computation): The opti-
mal ILO gains, in the sense of a minimization of the
estimation error covariance, jointly considering the trials i
and i+1, are given by[

Hi+1
1,k Hi+1

2,k

]
=
[ (

Ci
kCp

A,k +Ci+1
k Cp

C,k

)T (
Ci

kCp
B,k −Ci+1

k Cp
C,k

)T ]
·

[
CA,k +CC,k ⋆

CB,k −CC,k CA,k −
(

CB,k +CT
B,k

)
+CC,k

]−1

.

(17)
Proof: Optimality of the ILO gains is achieved by a

minimization of the cost function

J = tr
(

Ce,i|i+1
k

)
= tr

(
Cp,i|i+1

k − H̃kC̃kCp,i|i+1
k

−Cp,i|i+1
k C̃T

k H̃T
k + H̃k ·

(
C̃kCp,i|i+1

k C̃T
k + C̃v,k

)
· H̃T

k

)
.

(18)

Using the expressions (9)–(16), the cost function (18) is
rewritten into the form

J = tr
(

Cp,i|i+1
k −2Hi+1

1,k Ci
kCp

A,k −2Hi+1
2,k Ci

kCp
B,k

−2
(

Hi+1
1,k −Hi+1

2,k

)
Ci+1

k Cp
C,k +Hi+1

1,k CA,kHi+1
1,k

T

+Hi+1
2,k CA,kHi+1

2,k
T
+Hi+1

1,k CT
B,kHi+1

2,k
T −2Hi+1

2,k CT
B,kHi+1

2,k
T

+Hi+1
2,k CB,kHi+1

1,k
T
+Hi+1

1,k CC,kHi+1
1,k

T −Hi+1
1,k CC,kHi+1

2,k
T

−Hi+1
2,k CC,kHi+1

1,k
T
+Hi+1

2,k CC,kHi+1
2,k

T
)

(19)

that explicitly depends on the gain matrices Hi+1
1,k and Hi+1

2,k
to be determined.

With the help of the general differentiation rules

∂ tr(XA)

∂X
= AT ,

∂ tr
(
AXT

)
∂X

= A , and

∂ tr
(
XAXT

)
∂X

= X ·
(
A+AT ) ,

(20)

for the matrix trace operator applied to linear and quadratic
forms, and differentiating J as stated in (19) with respect
to Hi+1

1,k and Hi+1
2,k , the corresponding necessary optimality

conditions for a minimum of the estimation error covariance
are obtained by setting both derivatives to zero. Resolving
these equations, which are then linear in Hi+1

1,k and Hi+1
2,k ,

provides the closed-form expression (17) for the ILO gains.
These gains correspond to the global minimum of the cost
function (18) because the matrix[

CA,k +CC,k ⋆

CB,k −CC,k CA,k −
(

CB,k +CT
B,k

)
+CC,k

]
(21)

to be inverted in (17) is positive definite (ensuring uniqueness
of the optimum in the sense of a minimum of J) for
observable systems with proper covariance matrices. This
completes the proof of Theorem 3.1.

C. Summary of the ILO Procedure

So far, only the prediction and innovation steps of a
single evaluation of the stochastic estimation procedure were
described which take into account two subsequent trials i
and i+1. To turn this procedure into the full ILO approach,
two extensions are required. On the one hand, this is an
initialization phase during the very first trial i = 0. This
initialization consists of a classical (E)KF. On the other hand,
it is necessary to correct the state estimates from trial to trial
by storing the lumped correction term δδδ

i
k as introduced in (2).

Both extensions are straightforward and summarized in the
structure diagram that is depicted in Fig. 1.

IV. BENCHMARK EXAMPLE

A. Simplified Model of the Charging/ Discharging Dynamics
of a Lithium-Ion Battery

As described, for example, in [13]–[15], equivalent circuit
models can be used to approximate the charging/discharging
dynamics of Lithium-Ion batteries. As depicted in Fig. 2, the
associated state variables are then given by the normalized
state of charge (SOC) σ(t) as well as the voltages vTL(t)



Set i = 0, k = 0

While k < kmax

Evaluate the state prediction µµµ
p,0
k+1 = A0

k µµµ
e,0
k

Evaluate the covariance prediction
Cp,0

k+1 = A0
kCe,0

k A0
k

T
+E0

kCw,kE0
k

T

Compute the Kalman gain H0
1,k according to the standard

(E)KF procedure

Evaluate the state update in the innovation step:
µµµ

e,0
k = µµµ

p,0
k +H0

1,k ·
(

y0
m,k −Ckµµµ

p,0
k

)
Evaluate the covariance update in the innovation step by
the standard (E)KF procedure

Set k := k+1

Set δδδ
0
k = 0 for all k ∈ {0, . . . ,kmax}

Store the measurement sequence y0
m,k

While i < imax

Set k = 0

While k < kmax

Evaluate the state prediction[
µµµ

p,i
k+1

µµµ
p,i+1
k+1

]
=

[
Ai

k 0
0 Ai+1

k

]
·
[

µµµ
e,i
k

µµµ
e,i+1
k

]
+

[
δδδ

i
k

δδδ
i
k

]
(22)

including the disturbance estimate δδδ
i
k

Evaluate the covariance prediction according to Eq. (5)

Compute the optimal ILO gain acc. to Theorem 3.1

Evaluate the state and covariance update in the
innovation step acc. to Eqs. (8) and (9)

Set k := k+1

Update δδδ
i+1
k =

(
(i−1) ·δδδ i

k +Hi+1
2,k ·

(
∆yi

k −∆yi+1
k

))
· 1

i

Increment the trial counter i := i+1

Store the measurement sequence yi
m,k

Fig. 1: Structure diagram of the complete ILO algorithm.

and vTS(t) across two RC sub-networks. These RC sub-
networks represent processes with short and large time
constants (TS and TL, respectively) due to electro-chemical
polarization effects and concentration losses during charging

+

Fig. 2: Equivalent circuit model of a Lithium-Ion battery.

and discharging. This model has been extended in [7] by a
disturbance voltage z(t) to represent effects such as aging
and non-negligible temperature variations that affect the
open-circuit voltage vOC (σ(t)). This extension is not further
followed in the current paper, because we intend to estimate
a model-mismatch by the additive disturbance variables δδδ

i
k

introduced in the previous sections, see Eq. (2) and Fig. 1.
A continuous-time, quasi-linear model for the battery is

given by

ẋ(t) = A(σ(t)) ·x(t)+b ·u(t)

=


0 0 0 −1

CBat

0 −1
CTS·RTS

0 1
CTS

0 0 −1
CTL·RTL

1
CTL

0 0 0 −1
TI

 ·x(t)+


0
0
0
1
TI

 ·u(t) (23)

with the state vector

x(t) =
[
σ(t) vTS(t) vTL(t) iT(t)

]T (24)

in which the measurable terminal current results from an
underlying fast current controller. This underlying control
loop leads to the first-order lag behavior (TI = 0.1s)

TI ·
diT(t)

dt
+ iT(t) = id(t) (25)

for the temporal variation of the current iT(t), where the
system input u(t) := id(t) describes the corresponding set-
point that is given by a periodically repeated trajectory.

Moreover, the first row of Eq. (23) comprises the integrat-
ing behavior

σ̇(t) =− iT(t)
CBat

(26)

between the terminal current and the normalized SOC σ(t)∈
[0 ; 1], where σ = 1 denotes the fully charged battery with the
capacitance CBat; the operating point σ = 0 then represents
the completely discharged battery.

Although the terminal current iT(t) is assumed to be
measurable to demonstrate the proposed ILO scheme for a
single-input multi-output scenario, the use of state estimators
is inevitable to determine the true value of σ (t). This is
caused by the fact that neither its initial value σ (0) nor
the effective battery capacitance CBat are perfectly known
in practice. Especially, the latter value depends strongly on
the charging efficiency and on effects that can hardly be
described in a model-based form such as aging and the
influence of temperature variations. According to [13], [14],



the state Eqs. (23) further describe variations of the voltages
vι(t), ι ∈ {TS,TL}, across both RC sub-networks

v̇ι(t) =
−vι(t)

Cι(t) ·Rι(t)
+

iT(t)
Cι(t)

. (27)

The SOC dependencies of all equivalent circuit parameters
have been identified experimentally in [16], in the form of

RS(t) = RSa · eRSb·σ(t)+RSc (28)

for the Ohmic series resistance and by

Rι(t) = Rιa · eRιb·σ(t)+Rιc (29)

Cι(t) =Cιa · eCιb·σ(t)+Cιc , ι ∈ {TS,TL} (30)

for the parameters of the RC sub-networks. Note that the
structure of these equations is based on the work of Erdinc
et al. [13] and can be employed for a large variety of Lithium-
Ion cells. Besides the terminal current iT(t), also the battery’s
terminal voltage (derived by Kirchhoff’s voltage law)

vT(t) = vOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t) (31)

is available as a measured output, where the open-circuit
voltage is described in the form

vOC(σ(t)) = v0 · ev1·σ(t)+
3

∑
i=0

vi+2 ·σ i(t) , (32)

again by using the experimental parameter identification
of [16]. To reformulate Eq. (32) into a quasi-linear form,
the state-independent offset terms are subtracted from the
expression for the open-circuit voltage so that the expression

ṽOC(σ(t)) = ηOC (σ(t)) ·σ(t) = vOC(σ(t))− v0 − v2

=

(
v0 ·

ev1·σ(t)−1
σ(t)

+ v3 + v4 ·σ(t)+ v5 ·σ2(t)

)
·σ(t)

(33)

is obtained. In combination with the current measurement,
this leads to the vector-valued output equation

y(t) =
[

iT(t)
ṽT(t)

]
=

[
iT(t)

ṽOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t)

]
(34)

with the quasi-linear representation

y(t) = C(σ(t)) ·x(t)

=

[
0 0 0 1

ηOC (σ(t)) −1 −1 −RS(t)

]
·x(t) .

(35)

A temporally discretized version of this system model is
obtained by the explicit Euler discretization

Ak = I+T ·A(σ(tk)) (36)

with the sufficiently small step size T (here: T = 10ms).
In the output equation, the equality Ck = C(σ(tk)) holds
analogously. Effects of non-zero inputs are accounted for by
adding the term

bkuk = T ·b ·u(tk) (37)

onto the formula (22) in the form[
µµµ

p,i
k+1

µµµ
p,i+1
k+1

]
=

[
Ai

k 0
0 Ai+1

k

]
·

[
µµµ

e,i
k

µµµ
e,i+1
k

]
+

[
bkuk
bkuk

]
+

[
δδδ

i
k

δδδ
i
k

]
. (38)

Due to the fact that the input (37) is known (it is
computed from the reference signal of the underlying current
controller), and all imperfections with respect to the gener-
ation of the terminal current are summarized in the model
mismatch δδδ

i
k to be estimated, Eq. (38) is the only expression

of the ILO algorithm of Fig. 1 that needs to be adjusted for
the non-vanishing input considered in this example section.

B. Simulation Results of the ILO Approach

During the simulation-based evaluation of the ILO algo-
rithm, two cases of a model-mismatch are considered:
Case 1 The true system, generating the measured data, has

an additive offset
[
−10−8 0 10−4 0

]T in compari-
son with the state Eqs. (23), representing errors in the
magnitude of 0.02% wrt. the charging efficiency and up
to 300% in the variation rates of the voltage vTL.

Case 2 In addition to the error of Case 1, each element
Al,m,k of Ak is disturbed by an independent time-
invariant factor 1+ dl,m, where all dl,m are uniformly
distributed random numbers from the interval [0 ; 0.1].

Assuming the true initial state x(0) =
[
0.65 0 0 0

]T
and the ILO initialization µµµ

e,0
0 =

[
0.78 0 0 0

]T with
u(t) = 2Asin(2πt · 3600s−1) and Cw,k = 0.012I, Cv,k =[

0.01 0
0 100

]
, the estimation results in Figs. 3 and 4 are

obtained. It can be clearly seen that the ILO is capable
in both considered cases to reduce the root mean square
errors (computed along the complete trial) by around 20%
in the SOC and the voltage vTL after the 2nd or 3rd trial.
These variables are those states that have the largest absolute
estimation errors in Case 1. This improvement is confirmed
for Case 2, however, with larger remaining errors in the
directly measured terminal current which still remain below
the measurement’s standard deviation.

V. CONCLUSIONS AND OUTLOOK ON FUTURE WORK

In this paper, a novel stochastic ILO has been derived for
linear time-varying systems so that the estimation covari-
ance is minimized. Future work will aim at incorporating
physically inspired disturbance models replacing the model-
free term δδδ

i
k to provide the basis for an iterative parameter

identification, for fault detection and isolation, as well as for
including the ILO in closed-loop control structures.
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