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Abstract— This paper introduces an Online Localisation
and Colored Mesh Reconstruction (OLCMR) ROS perception
architecture for ground exploration robots aiming to perform
robust Simultaneous Localisation And Mapping (SLAM) in
challenging unknown environments and provide an associated
colored 3D mesh representation in real time. It is intended
to be used by a remote human operator to easily visualise
the mapped environment during or after the mission or as
a development base for further researches in the field of
exploration robotics. The architecture is mainly composed
of carefully-selected open-source ROS implementations of a
LiDAR-based SLAM algorithm alongside a colored surface
reconstruction procedure using a point cloud and RGB camera
images projected into the 3D space. The overall performances
are evaluated on the Newer College handheld LiDAR-Vision
reference dataset and on two experimental trajectories gathered
on board of representative wheeled robots in respectively urban
and countryside outdoor environments.

Index Terms— Field Robots, Mapping, SLAM, Colored Sur-
face Reconstruction

I. INTRODUCTION

Embedded architectures for autonomous robots perform-
ing exploration missions are continuously improving, such
that localisation and map construction in a previously un-
charted environment becomes possible with limited human
intervention [1]. Many SLAM-based localisation methods
have been proposed and extensively evaluated on reference
datasets. They rely either on monocular cameras or stere-
ovision [2]–[4], or on 2D or 3D LiDAR scanners [5]–
[8], with some recent attempts to combine both types of
sensors [9]. Several computationally-efficient online mapping
and 3D reconstruction approaches have been proposed in
parallel [10], while the specific issue of the colourisation
of mesh or point cloud representations has been investigated
independently [11], [12]. However, there remains the need to
further evaluate in realistic conditions the behaviour and per-
formances of full systems which are able to combine online
localisation, mapping and mesh colourisation on real ground
robots equipped with 3D LiDAR and vision sensors [13].

Early work on the subject of real-time 3D mesh re-
construction in [14] introduced real-time 3D surface mesh
reconstruction in an urban environment using stereo cam-
era images and pose estimation obtained by fusing GNSS
measurements and visual odometry. The method proposed in
[15] performs real-time 3D mapping of house-sized indoor
environments through the application of Truncated Signed
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Fig. 1. Example of online colored mesh rendered by the proposed system

Distance Function [16] and dynamic voxel hashing [17],
with Visual-Inertial Odometry (VIO) as localisation source.
While 3D mesh reconstruction was mainly intended to be
used as a visualisation tool for human operators, later work
has focused on the aspect of surfacic mesh mapping for
navigation purposes, arguing that surface-based maps contain
more dense information compared to sparse point clouds.
This makes them more exploitable for autonomous driving or
robot navigation (either autonomous or remotely-operated).
Limitation of memory usage and computational cost along
with scalability of the 3D mesh reconstruction solution are
major concerns when addressing the deployment of such
systems on the field. In [18], a method has been presented
to carry out online 3D large-scale mesh reconstruction using
manifold mapping and monocular-camera-based localisation
applied to urban mapping and evaluated on the KITTI
autonomous driving dataset [19]. An online localisation and
dense scalable 3D map reconstruction architecture has been
presented in [20] with grayscale coloring. It implements
surfel based methods with the use of RGB-D, stereo and
monocular cameras. Texture projection on reconstructed
meshes is addressed in [21] and [22], however the presented
methods consist of a post-processing of the whole data and
are thus performed offline. In [23], a multi-robot system
using stereovision-based localisation and 3D TSDF manifold
mapping with grayscale coloring has been shown to run in
real-time in an indoor environment. A real-time approach
for creating and maintaining a colourised or textured surface
reconstruction from RGB-D sensors has been introduced
in [24], with a special focus on memory management for
scalability.

The Online Localisation and Colored Mesh Reconstruction
(OLCMR) architecture proposed in the present paper is a
complete system that performs both localisation and colored
mesh reconstruction in real-time on board of a ground robot
equipped with a 3D LiDAR scanner and multiple cameras.
Figure 1 depicts an example of reconstruction produced
by this system. The designed system builds upon recent
open-source implementations of LiDAR-based SLAM and
3D mesh reconstruction methods that are summarized in



Section II in perspective with related work, along with a de-
scription of the adaptations that were necessary to tackle the
common objective pursued here. The overall performances of
the proposed OLCMR architecture have then been evaluated
on the handheld Newer College reference benchmark [25],
[26] and are reported in Section III. The results and computa-
tional needs achieved on two experimental datasets acquired
with tele-operated ground robots in urban and countryside
outdoor environments are given in Section IV to demon-
strate the versatility and wide applicability of the system.
The results on these three different test cases include the
evaluation of localisation (with and without loop-closure)
and mapping accuracy with respect to independent reference
models. Illustrations of mesh coloration are also presented
for each dataset alongside images taken from the robot
camera to highlight the quality of the whole reconstruction.

II. OLCMR ARCHITECTURE DESCRIPTION

The system architecture (Figure 2) has been designed to
process data on-board of a ground robot for online missions
in diverse uncharted environments. The main requirement
was to be able to combine data from a 3D Laser scanner, one
or several monocular cameras and an IMU, given intrinsic
and extrinsic calibration parameters of these sensors (using
e.g. [27]). The main objective is to compute online a dense
colored 3D reconstruction with sufficient localisation accu-
racy, in order to be provided during the autonomous robot
mission. The architecture is intended to function in various
types of scenarios presenting challenging characteristics such
as GNSS-denied, unstructured surroundings, dim or varying
lights, uneven terrain.

It has been chosen to rely on a LiDAR-based SLAM
(Lidarslam ROS2) [28] for localisation to be light-invariant
and to navigate in environments with possibly long ranges
to points of interest, thus ruling out most of vision-based
methods [4], [6]. The choice of the LiDAR as the main
localization and mapping sensor also readily provides a 3D
point cloud without any additional computational cost for the
embedded CPU. IMU measurements and kinematic odometry
(based on wheel encoders) are additionally used to robustify
the robot localisation through EKF sensor fusion. The camera
images are intended to enrich the produced 3D mesh by
incorporating color levels or any kind of visually extracted
data (e.g., semantic classification in a future perspective)
through their projection in the 3D dense reconstruction using
their relationship with the LiDAR point cloud. The TSDF-
based mapping method Voxblox [29] is used to obtain this
3D dense reconstruction of the environment

The processing required by OLCMR is entirely performed
on CPU (see related evaluation results in Section IV). The
architecture is implemented under ROS2 Galactic, with the
3D mesh reconstruction running under ROS Noetic and
communicating through a ROS1/ROS2 bridge [30].

A. Localisation

Reviews of open-source ROS SLAM implementations
based on the use of stereo cameras, depth cameras or
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Fig. 2. OLCMR architecture overview

LiDAR are proposed in [3]–[5], [7]. For the previously stated
reasons, our choice for a SLAM implementation has been
restricted to the LiDAR based approaches. Since OLCMR
is supposed to operate in complex outdoor environments
(possibly unstructured and with uneven terrain) and relies
on a 3D point cloud for mapping purposes, 2D LiDAR
based approaches have been excluded. Recent SLAM im-
plementations are often composed of two distinct parts.
The SLAM front-end allows real-time localisation of the
robot relative to its close environment, relying on high-
rate sensors, either proprioceptive or external. The back-
end estimates and corrects the localisation drift induced
by the front-end over time. It run at a lower rate and
relies either on absolute measurements such as GNSS as in
LIO-SAM [31], or landmarks of known absolute position
or on the recognition of previously visited areas (loop-
closure). The vast majority of LiDAR-based SLAM front-
end implementations are centered on the use of a scan-to-
scan or scan-to-submap matching algorithm. The most used
approach for scan-to-scan matching is Iterative Closest Point
(ICP) [32], which however presents significant drawbacks in
the studied context where the LiDAR clouds are composed
of a vast number of points, depending on the sensor angular
resolution and beam number (typical numbers being 16, 32,
64, 128). Thus, the sole application of an iterative, exhaustive
algorithm such as ICP for scan matching can be suboptimal
requiring a consequent amount of calculation to converge
and grant satisfying results. A widely used solution to that
issue is the extraction of interest points for each LiDAR scan
using geometric properties of the cloud’s distribution, as in
LEGO-LOAM [33]. The ICP matching is then performed
only using these more relevant points thus requiring way
less computational capacity. However, the interest point
extraction is still a costly process and requires the point
cloud to present a somehow organised distribution for them
to be extracted efficiently. As an alternative, a stochastic
method based on normal approximation of the point cloud
distribution named Normal Distribution Transform (NDT)
was introduced in [34]. This makes the SLAM algorithm
appropriate for evolution in unstructured environment as well
as in geometrically rich ones, and requires limited computa-
tional power with no feature point extraction processing.

For these reasons, the Lidarslam ROS2 open-source



SLAM implementation of a LiDAR scan-to-scan matching
has been integrated in the proposed architecture. In order
to reduce the impact of locations that could be difficult to
map (e.g. corridors with repeating geometrical patterns or
bare flat fields) and for the SLAM to converge faster, the
scan matcher takes a prior transform and differentiates it
from the latest prior to use as initial guess for the transform
between two scans. The prior choice is left to the discretion
of the user. In the current case, the prior must present a
good trade-off between accuracy and computational cost. It
has thus been chosen to estimate it by fusing the forward
velocity from wheeled odometry and the orientation and
angular velocities from the IMU using an Extended Kalman
Filter. The chosen method requires a significant overlap
between successive scans, which could make it unsuitable
to fast moving vehicles such as autonomous cars. In order to
avoid some local failures in the scan-to-scan pose estimation
(typically happening during fast rotations or very jittery
motions), we proposed the following procedure: when the
estimated transform from the last scan pose is greater than a
threshold (set to 0.5 m) from the prior pose, this prior is used
as final estimated transform and the associated scan is not
registered into the map. The LidarSlam back-end performs
loop-closure detection by comparing the current scan to
stored key-frames using NDT and pose graph optimisation
with the g2o framework [35].

B. 3D Dense Reconstruction

The idea of producing a dense representation of the
explored environment from the LiDAR point-clouds instead
of using the sparse map produced by the SLAM imple-
mentation is driven by two different needs. In the first
place, a point-cloud map is not the most adequate for
visualisation by a human operator as the structure of mapped
objects remains ambiguous when looking at it, especially
in cluttered environments. Secondly, a dense representation
is much more adapted to navigation purposes as it allows
the robot to infer the terrain traversability at any coordinates
without requiring further interpolation and therefore navigate
in the full exploration space. Various methods for 3D dense
representation of the environment have been developed by
the robotic and computer vision community. Since OLCMR
is intended to function in real-time, offline methods such as
Structure from Motion and Poisson surface reconstruction
have been dismissed. Voxel-based visualisation produced by
methods such as Octomap [36] is well-suited for inclusion
in autonomous navigation loops but less in terms of visu-
alisation. Online surfacic methods such as the previously
mentioned TSDF [16] use the information of sensor position
relative to points in the cloud, thus removing the ambiguity
of surface orientation and allowing to identify free space
between the sensor and the mapped points. For these rea-
sons, the 3D mesh reconstruction relies on the open-source
implementation of the Voxblox ROS package [29] to build
incrementally a surfacic mesh from each LiDAR scan using
the generated point-cloud and the current robot pose (given
by the SLAM/EKF process described in Section II-A) before

fusing it in the globally reconstructed mesh.

C. 2D-3D color re-projection

A dedicated process handles the colourisation of the
LiDAR points with the corresponding pixel values from the
RGB camera images, for further inclusion in a 3D colored
mesh. The projection of the 3D points into the camera images
is computed geometrically [37] as follows. For each camera,
the coordinates of the 3D LiDAR points are expressed into
the camera frame, with R and t respectively being the
rotation matrix and translation vector between the LiDAR
(L) and camera (C) frames.[

xi yi zi
]T
C
= R.
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The coordinates are projected into the image plane using the
intrinsic camera matrix, where the parameters px, py , cu and
cv come from the camera calibration process.uv
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Let V (u, v) be the value (e.g. RGB color) of the pixel of
coordinates u, v. Because cameras are affected by distortion,
undistortion is applied to compute the image U using the
distortion model and parameters given during calibration. If
the resulting coordinates are inside the image bounds, the
RGB value of the pixel of coordinates [u, v] is allocated
to the corresponding 3D LiDAR point. The color field is
denoted as C.

C(xi, yi, zi) = U(u, v) (4)

Each surface reconstructed by the TSDF is then colored by
the Voxblox pipeline with a recursive average filtering of its
vertex colors.

For the evaluations of Section III, the full calibration
parameters were available in the reference dataset. For the
robot acquisitions from Section IV, the calibration process
was performed using the Kalibr ROS package [27]. The in-
trinsic parameters and distortion model are estimated for each
camera using a collection of images of an AprilTag grid of
known dimensions. Kalibr exploits IMU measurements and
the camera overlaps to estimate their extrinsic parameters.
The transform between the LiDAR and the cameras was
determined manually using the CAD model of the robots.
Note that it is well known that combined LiDAR-vision
systems can be very sensitive to the calibration between these
two sensors for re-projection or SLAM purposes [9].

III. EVALUATION ON THE NEWER COLLEGE DATASET

Robot-held public datasets such as [38] or [39] do not
contain all the required sensors at once (e.g. LiDAR and
cameras). Vehicle-based datasets such as KITTI [19] are
not adapted to our architecture, with large moving objects



and reduced overlap between successive scans. The perfor-
mances of the OLCMR architecture have thus been evaluated
in terms of localisation precision and 3D reconstruction
quality with the Newer College Dataset [25] and its 2021
extension [26], and a qualitative assessment of the mesh
colourisation is also presented. The Newer College dataset
extension provides LiDAR scans, IMU measurements and
monocular images gathered from 4 cameras aboard a hand-
held device along various trajectories inside New College,
Oxford. Ground-truth for the evaluation of SLAM and 3D
reconstruction are provided using a tripod-mounted survey
LiDAR and ICP registration, and many modern SLAM
solutions have been evaluated on this dataset. For these
reasons, this dataset has been deemed to be relevant for
the evaluation of the OLCMR architecture performances.
Although the architecture has been developed to function
optimally aboard a ground robot, a few changes allowed it
to be efficient while treating the data gathered from these
handheld trajectories. The robot kinematic odometry used as
prior has been replaced with a constant forward speed of
1.0 m/s and the 128 beam LiDAR point cloud has been
down-sampled 10 times for SLAM input to limit its CPU
usage. This section presents these evaluation results with
relevant comparison to state-of-the-art. All evaluations were
performed on a Intel Xeon(R) W-2123 8 core 3.60GHz CPU
with 16 GB of RAM.

A. Localisation Evaluation

The localisation building blocks (LiDAR SLAM and EKF
management of prior) of the proposed architecture have been
evaluated on this dataset. The goal of this evaluation is to
ensure that this localisation is sufficiently precise to be used
for the overall colored mesh reconstruction. Following the
localisation evaluation protocol proposed in [40], the Relative
Pose Error over 10 m (RPE) and the Absolute Trajectory
Error (ATE) are respectively computed for the 2021 quad-
easy and 2020 short-experiment datasets. They are compared
to state-of-the art SLAM evaluations on the same trajectories
(as respectively reported in [41] and [42]). Fig. 3 shows
the trajectories estimated by the SLAM scan matcher and
loop closure optimiser superimposed on the ground truth
trajectory, as well as yaw errors. Table I summarizes the
SLAM performances. The localisation performance is con-
sistent with the best currently available SLAM methods and
the loop closure yields a small performance improvement,
since the front-end SLAM presented only a small drift in
this richly-textured environment.

B. 3D Reconstruction Evaluation

The Newer College dataset offers ground-truth 3D meshes
of the visited area used to evaluate the quality of our 3D mesh
reconstruction. After running the mapping pipeline of the
architecture (composed of the LiDAR SLAM and Voxblox)
on the Newer College dataset, the resulting uncolored mesh
is treated and compared to the ground truth model using
the CloudCompare open-source software1. Both meshes are

1CloudCompare website : https://www.danielgm.net/cc/

TABLE I
SLAM EVALUATION ON THE NEWER COLLEGE DATASET

nc 2021 quad-easy nc 2020 short-experiment
Duration 198.7 s Duration 1530.0 s
Length 245.7 m Length 1570.3 m
SLAM RPE SLAM APE

OpenVINS [43] 1.01 m A-LOAM [44] 3.308 m
ORB-SLAM3 [45] 0.23 m F-LOAM [46] 101.9 m
VILENS-MC [41] 0.31 m MARS [42] 1.978 m

VILENS-Stereo 0.30 m SuMa [47] 2.048 m
LidarSlam SM 0.28 m LidarSlam SM 5.141 m
LidarSlam LC 0.27 m LidarSlam LC 4.010 m

Fig. 3. Newer College localisation evaluation, top shows trajectories
estimated after scan matching (left) and loop closure optimisation (right)
superposed to the ground truth trajectory. Bottom shows Absolute Yaw Error
smoothed over 50 samples for same trajectories.

sampled into dense point clouds which are then manually
stripped of aberrant points produced by reflective surfaces
(e.g. windows) by applying a planar cut-off beyond said
surfaces. The closest point error between the two resulting
point clouds is performed using the M3C2 method described
in [48]. Points that have no relevant match are removed. 90%
of our reconstruction model points show a distance error to
the ground truth model lesser than 0.54 m. As a comparison,
[8] states that 90% of the points from their reconstructed
model show a distance error lesser than 0.50 m on a similar
dataset. The results are illustrated in Figure 4. This validates
the soundness of the overall LiDAR-based localisation and
dense mapping algorithms incorporated in the architecture.
The projection of the camera grayscale levels has also been
carried out as detailed in Section II-C, and the associated
qualitative result is given in Figure 5. The CPU and RAM
usage have also been monitored during the processing of
the trajectories (see Figure 6). It turns out that the CPU
needs have been successfully adjusted to avoid the saturation
of available resources with limited growth over time, and



that the RAM requirements increase quite linearly which
is a usual behaviour of SLAM systems as the map size
increases. By performing a linear fit to the RAM usage,
the maximum duration of a mission with similar settings
is roughly estimated to 3142 s.

Absolute M3C2 distance [m]

C
ou

nt

Fig. 4. Newer College reconstruction comparison: Top left shows the
reference 3D model from the dataset, bottom left shows the output of our
architecture and right shows the absolute reconstruction error point cloud
with histogram, output of MC3C2 absolute distance computed on the Newer
College dataset.
Mean = 0.236 m, Std = 0.248 m

Fig. 5. 3D mesh with mono camera projection, output of the application
of the complete OLCMR architecture on the Newer College Dataset. Left
shows the complete reconstructed mesh, right shows a comparison between
a camera frame and a corresponding view of the reconstructed mesh.

IV. EVALUATION ON FIELD ROBOTS TRAJECTORIES

The proposed method obtained good performances on the
Newer College dataset, which contains handheld trajecto-
ries acquired in a highly-textured environment. To further
evaluate the OLCMR architecture in situations closer to its
goal applications, we acquired two dedicated experimental
datasets produced by tele-operating wheeled ground robots
along predefined trajectories and gathering relevant percep-
tion data. These two datasets were respectively produced
on-board of a Robotnik Summit-XL robot in a urban en-
vironment and an Agilex Scout robot in a countryside envi-
ronment. These two platforms are four-wheel differentially

Fig. 6. CPU (mean: 84.4 %, std: 11.7 %) and RAM (max: 23 %) usage
of OLCMR while running on the Newer College dataset. Mean CPU usage
and linear regression of RAM usage are displayed on relevant figures.

driven, equipped with on-board CPUs running Ubuntu and
ROS, and their respective sensor suites are summarized in
Table II. OLCMR components main parameters for each
dataset are referenced in Table IV. The data processing has
been performed on the same computer as for the reference
dataset evaluation from Section III, which presents similar
computational power as the robots’ embedded computers.

TABLE II
SENSORS EMBEDDED ON ONERA-DTIS SUMMIT AND SCOUT ROBOTS

Sensor Technical Reference Rate
Summit

Wheel Encoders Robotnik embedded 50 Hz
IMU VectorNav VN-100-t 400 Hz

LiDAR Velodyne VLP-16 10 Hz
3x RGB Cameras uEye IDS 3241LE-C 10 Hz

Scout
Wheel Encoders AgileX embedded 50 Hz

IMU XSens MTi 300 400 Hz
LiDAR Ouster OS1-32 10 Hz

3x RGB Cameras Basler dart daA1600-60uc 10 Hz

Fig. 7. ONERA-DTIS Agilex Scout and Robotnik Summit XL robot setups

A. Localisation Evaluation

The localisation global performance has been evaluated
with respect to the total drift of the trajectories, so this drift is
estimated by the difference between the last pose and the first
pose computed given the fact that robots were operated in
order for the actual ending pose to be approximately equal to
the actual starting pose. The characteristics of the trajectories



TABLE III
SLAM EVALUATION ON FIELD DATASETS

Summit (urban)
Trajectory duration 516.605 s
Trajectory length 400.295 m

Scan matcher final APE 4.794 m
Loop closure final APE 1.943 m

Final loop closure correction 3.120 m
Scout (countryside)

Trajectory duration 399.399 s
Trajectory length 407.045 m

Scan matcher final APE 8.582 m
Loop closure final APE 1.486 m

Final loop closure correction 8.034 m

and the values of the approximated final APE and loop-
closure total corrections are summarized in Table III, and
Figure 8 presents the robot estimated trajectories. The overall
drift without loop-closure remains between 1 and 2 percents,
with a higher value in the less-textured environment. These
degradations compared to the previous dataset could be inter-
preted by the transition from high-quality handheld sensors to
robot-mounted lower-grade IMU and LiDAR sensors. These
performances remain acceptable to carry out the online 3D
dense model rendering process.

Fig. 8. Robot trajectories on field datasets. Top with the Summit robot,
bottom with the Scout robot.

B. 3D Reconstruction Evaluation

Images have been acquired independently from the robot
setups in the two new test environments using handheld
camera devices, respectively a stereo bench composed of 2
uEye IDS 1241LE-M monocular cameras for the Summit
(urban) dataset and a HERO7 GoPro for the Scout (country-
side) dataset. An offline photogrammetric 3D reconstruction
has then been obtained using the Structure-From-Motion

Colmap software [49]. The reconstruction errors between
the mapping obtained with the OLCMR architecture using
the robots embedded sensors and these Colmap-generated
reference models have been analyzed using CloudCompare
(see Figure 9). The colored rendering mesh is presented
in Figure 10. The CPU and RAM usage evaluations (Fig-
ure 11) show a similar behaviour as on the Newer College
dataset, which seem to be compatible with on-board actual
deployment for trajectories lengths of one-kilometer order of
magnitude.

Summit : Mean = 1.78 m, Std = 1.90 m

Scout : Mean = 0.61 m, Std = 0.92 m

Fig. 9. Reconstruction error point cloud map and histogram, output of
M3C2 absolute distance computed from Summit (top) and Scout (bottom).

V. CONCLUSIONS AND PERSPECTIVES

An architecture running in real-time combining LiDAR-
based localisation with 3D dense mapping and mesh colouri-
sation using multiple cameras has been proposed in this
paper. It is based on recent open-source ROS package
implementations of a LiDAR SLAM and a TSDF-based
mapping algorithms, with specific developments to assemble
the overall pipeline. The full system has been thoroughly
evaluated on datasets exhibiting different characteristics,
namely the Newer College handheld benchmark and two
dedicated trajectories acquired with wheeled ground robots



Fig. 10. Mesh rendering for Summit robot (urban) dataset (top) and Scout
robot (countryside) dataset (bottom). For each dataset, example of picture
with corresponding view of the OLCMR colored mesh and bird-eye view
of the global colored mesh are shown.

Fig. 11. CPU (mean: 81.782 %, std: 11.7 %) and RAM (max: 29 %) usage
of OLCMR while on the Summit robot data. Mean CPU usage and linear
regression of RAM usage are displayed on relevant figures.

TABLE IV
OLCMR OPEN-SOURCE COMPONENTS MAIN PARAMETERS FOR EACH

EXPERIMENT

parameter Newer College Summit Scout
LidarSlam scan matcher

ndt resolution 1.5 1.0 0.8
vg size input 0.1 0.1 0.1
vg size map 0.1 0.1 0.1
min range 1.0 1.0 3.0
max range 50.0 50.0 100.0

num targeted cloud 20 20 20
LidarSlam loop closure

ndt resolution 1.0 1.0 1.0
voxel leaf size 0.1 0.1 0.1

detection period 7500 4000 4000
threshold loop closure 15.0 15.0 15.0
distance loop closure 50.0 50.0 50.0

loop closure search range 50.0 50.0 50.0
num submap searched 10 20 20

num adj. pose constraints 10 20 20
Voxblox

voxel size 0.2 0.125 0.15
voxels per side 4 8 8

carving true false false
use free space false false false

method fast merged merged
constant weight false false false

allow clear false false false
min ray length 2.0 0.5 0.0
max ray length 200.0 200.0 200.0

in urban and countryside environments. The architecture
performed well in all of these conditions, which make
it suitable for future field deployment of tele-operated or
autonomous robotic exploration.

The loop-closure is currently used solely by the locali-
sation stack. To improve the development of the OLCMR
architecture, it could also be integrated within the mapping
stack in a manifold framework such as [23]. Additional
layers could be added to this perception architecture, e.g.
for semantic navigation in unknown environments. The next
step towards that goal would be to implement semantic
segmentation on camera images before projecting them into
the 3D space in order to create semantic maps that could be
used by the robot for safer and better autonomous navigation.
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