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A Multi-Robot System for 3D Surface Reconstruction
with Centralized and Distributed Architectures

Guillaume Hardouin1,2,∗, Julien Moras1, Fabio Morbidi2, Julien Marzat1, El Mustapha Mouaddib2

Abstract— This paper proposes an original solution to the
problem of surface reconstruction of large-scale unknown en-
vironments, with multiple cooperative robots. As they progress
through the 3D environment, the robots rely on volumetric
maps obtained via a TSDF representation to extract discrete
Incomplete Surface Elements (ISEs), and a list of candidate
viewpoints is generated to cover them. A Next-Best-View planning
approach, which approximately solves a Traveling Salesman
Problem (TSP) via greedy allocation, is then used to iteratively
assign these viewpoints to the robots. Two multi-agent architec-
tures, a centralized one (TSP-Greedy Allocation or TSGA) and a
distributed one (dist-TSGA), in which the robots locally compute
their maps and share them, are developed and compared.
Extensive numerical and real-world experiments with multiple
aerial and ground robots in challenging 3D environments, show
the flexibility and effectiveness of our surface representation of
a volumetric map. The experiments also shed light on the nexus
between reconstruction accuracy and surface completeness, and
between total distance traveled and execution time.

Index Terms— Next-Best-View (NBV) planning, Multi-robot
system, 3D reconstruction, Truncated Signed Distance Function
(TSDF), Sampling-based motion planning.

I. INTRODUCTION

As research in multi-agent systems is developing at a rapid
pace, autonomous cooperative robots are being increasingly
used in time-sensitive applications, such as ocean sampling [1],
cinematography [2], wildlife survey [3], logistics automa-
tion [4], and mapping of mine tunnels [5], just to name a
few relevant examples. However, in spite of major progress
in the field, we are still a long way from coordinated online
exploration and reconstruction of vast, complex, unknown
3D environments with teams of mobile robots (large indus-
trial plants, archaeological sites, battlegrounds, etc.). For this
challenging problem, distributed solutions offer distinctive
advantages over centralized ones (resilience against failures,
scalability with respect to the number of robots, etc.), but they
are still relatively rare in the literature.

In this paper, we present a novel 3D reconstruction method
for multiple cooperative robots that addresses the problem
of surface inspection of unknown environments, via a Next-
Best-View (NBV) frontier-based planner. A single objective
function, which takes the surface representation explicitly
into account, is used to plan collision-free paths for the
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robots within a centralized and a distributed architecture.
Numerical simulations and real-world experiments show that
the proposed architectures are robust against uncertain mea-
surements, and provide accurate, complete and time-efficient
3D reconstructions.

This work is a significant outgrowth of our two previous
conference papers [6], [7]. We propose here a new distributed
multi-robot architecture and numerically show its pros and
cons with respect to the centralized one, in [7]. We also
compare the single-robot method in [6], with a relevant state-
of-the-art algorithm [8]. Finally, the present article includes
a more thorough description of the background, a more
general mathematical formulation, and extensive hardware
experiments with multiple ground robots.

In summary, the original contributions of this paper are the
following:
• Differently from the conventional NBV exploration ap-

proaches, which select viewpoints among a large set of
randomly-sampled poses [8], [9], we directly consider a
3D representation of the incompleteness of the surface to
generate a roadmap of viewpoints and to carry out the
reconstruction with a team of mobile robots,

• We introduce multi-agent NBV planners to route robots
to viewpoint configurations, and achieve surface recon-
struction. More specifically, clusters of configurations are
greedily allocated to the robots by successively (approx-
imately) solving a Traveling Salesman Problem (TSP),

• To validate our approach, which admits both a central-
ized and a distributed implementation, we undertook a
large campaign of numerical simulations with Unmanned
Aerial Vehicles (UAVs) and real-world experiments with
ground robots.

The remainder of this paper is organized as follows.
Sect. II reviews and catalogues the related work, while Sect. III
formally introduces the problem studied in the paper. Sect. IV
provides a general overview of the proposed approach, and
Sect. V and Sect. VI deal with the perception and planning
problems, respectively. The centralized and distributed multi-
robot architectures are tested via numerical and hardware
experiments in Sect. VII and Sect. VIII, respectively. Finally,
Sect. IX concludes the paper, and identifies possible areas
of improvement.

II. RELATED WORK

Planning informative paths for real-time 3D modeling of
unknown environments has been the subject of intense re-
search in recent years. Volumetric-mapping methods represent
the free and occupied space, and provide accurate surface esti-
mations for reconstruction, both for single and multiple robots.
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TABLE I
MAIN FEATURES OF SOME REPRESENTATIVE STATE-OF-THE-ART NBV RECONSTRUCTION METHODS, COMPARED TO OURS.

Method Mapping View planning Criterion Path computation Multi-robot
Ours, 2020 [6], [7] TSDF Roadmap Surface Lazy PRM? 4

[Bircher et al., 2018] [10] TSDF Random sampling Volumetric RRT 8

[Song & Jo, 2018] [11] TSDF, Point cloud Random sampling Volumetric RRT? 8

[Schmid et al., 2020] [8] TSDF Random sampling Surface RRT? 8

[Kompis et al., 2021] [12] TSDF, ESDF Roadmap Surface A? 8

[Mannucci et al., 2017] [13] OctoMap Random sampling Volumetric RRT? 4

[Corah & Michael, 2021] [14] General occupancy grid Random sampling Volumetric MCTS 4

[Lauri et al., 2020] [15] General occupancy grid Offline sampling Volumetric Offline Multi-sensor

In tandem with these emerging mapping methods, volume
exploration planners have been developed to rapidly explore
unknown volumes and provide coarse 3D reconstructions. The
main focus of early work on surface-based reconstruction has
been on accuracy, and the optimized cost function incorporates
one or multiple surface criteria. Recently, the volumetric
and surface-based approaches have been combined to take
advantage of their unique properties, but only the single-robot
case has been studied.

A. Volumetric mapping

Volumetric mapping consists in discretizing the 3D space
into small cells: the cells can be unknown, empty or occupied,
and they can be used to represent a 3D scene of interest.
A popular online 3D modeling approach, OctoMap, was
introduced in [16]. It relies on a 3D occupancy grid with an
internal octree data structure. This representation adapts the
level of detail of the map to the environment, which reduces
memory usage, enabling real-time processing on CPU. In [17],
the authors proposed KinectFusion, which uses measurements
from an RGB-D camera to calculate the Truncated Signed
Distance Function (TSDF) [18] over a grid, leading to an im-
plicit surface representation. Successive improvements of the
method resulted in reduced memory usage [19], and recently
the open source library CHISEL [20] made it available for
3D reconstruction on mobile devices. In [21], this mapping
method has been revisited by considering Euclidean Signed
Distance Fields (ESDF), which improves the accuracy of the
distance map. The concept of manifold mapping [22] has
been incorporated within a TSDF framework, to mitigate
the mapping error due to localization drift [23], and the
traditional monolithic map has been replaced by a collection
of multiple local sub-maps (or patches). In [24], the authors
have extended this concept to distributed mapping, for multiple
ground robots.

B. Single-robot planning

Given a volumetric map, a robot can try to explore an
unknown volume containing objects of interest. Volumetric-
exploration methods usually leverage a volumetric represen-
tation (e.g. an OctoMap), to identify known, unknown, or
occupied areas. Sampling-based planners, such as Rapidly-
exploring Random Trees (RRT [25], RRT? [26]), are used
for trajectory generation by incrementally expanding a tree
constituted of randomly-sampled sensor poses in the free
space. On the other hand, Probabilistic Roadmap planners

(PRM [27], Lazy PRM? [28]), extract the trajectory/path
from a graph formed by randomly-sampled poses between
a start and a goal configuration, according to a given ob-
jective function. In an NBV-planning framework, volumetric
exploration methods are usually related to informative path
planning, which consists in expanding trees and in selecting
the NBV trajectory that guarantees the maximum coverage of
the volume (see [29]–[33] for RRT-based methods, and [34]
for a PRM-based method). Pose coverage along the trajectory
is evaluated via ray tracing [35], and as the robot follows the
assigned path, the volume is automatically explored. These
fast and efficient methods rely on a coarse volumetric map
of the environment for navigation purposes, but they do not
explicitly account for the completeness and accuracy of the
reconstructed surface.

Surface-inspection methods use the current surface to gen-
erate a roadmap of candidate viewpoints which ensure a
complete and accurate 3D reconstruction. NBV methods de-
termine the next best viewpoints to visit, depending on the
mission of the robots. Among them, frontier-based methods
yield viewpoint configurations pointing towards the frontier
of the known surface, represented as a mesh, according to a
given orientation, position, or sensing constraint. By visiting
these configurations, the robot-sensor gathers new surface
information with some overlap, for ensuring continuity [36]–
[38]. Most of these approaches deal with small objects re-
constructed by cameras mounted on the end-effector of robot
manipulators, and make strong assumptions on the navigable
free space. In the last five years, NBV inspection methods
have been extended to mobile robots by using volumetric
representations [9], [37] and the TSDF [6], [8], [39].

Recently, hybrid or mixed methods, which benefit from
the main advantages of surface-inspection and volumetric-
exploration approaches, have emerged for improved recon-
struction accuracy and faster coverage (see Table I). In [10],
the reconstruction process includes two steps: first, a coarse
TSDF map of the environment is generated, and then, in
a second modeling step, the surface is refined. Reasoning
on the occupancy map, the algorithm in [40] allows the
robot to cover the whole surface model. The authors have
extended their approach in [11], where the RRT? path is
further refined by taking the completeness of the environment
surface, into account. More recently, in [41], the method has
been improved and validated via numerical and real-world
experiments. These approaches rely on both volumetric and
surface representations, which are costly to generate, and only
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a few of them solve the surface-inspection problem directly.
A RRT-based planning method with a volumetric represen-
tation of the surface, has been presented in [8]. However,
the poses are still sampled randomly rather than planned in
advance, which may lead to unnecessary maneuvers. In [6], we
proposed to extract the viewpoints directly from the knowledge
of the map. A planning roadmap is created and used for
3D reconstruction, and the magnitude of unknown surface
determines the stopping criterion. Finally, in [12], the authors
introduced a method reminiscent of ours, based on ESDF
mapping and A? path search.

C. Multi-robot planning

As allused to in the previous sections, the existing research
on incremental online reconstruction generally targets a single
robot, and multi-robot cooperative systems are still relatively
rare in the literature [42]. By considering robots equipped
with laser scanners in a 2D environment, the authors in [43]
were the first to propose a method for computing frontier
cells, and to define the trade-off between utility and distance
traveled in a multi-agent exploration task. In [44], the authors
compared multiple volumetric objective functions in terms of
reconstruction time and volume completeness, by considering
pose measurement errors in 2D environments. In [13], the
authors considered a team of aerial robots in an uncluttered
outdoor environment, and proposed one of the first cooperative
frontier-based methods, which relies on 3D space modeling
for multi-robot exploration. The centralized OctoMap and
the (RRT?-based) coordinated motion planning of the aerial
vehicles are computed on a base station, and the algorithm is
evaluated via realistic numerical experiments with emulated
stereo sensors in ROS/Gazebo. Exploration methods based on
probabilistic occupancy maps with entropy reduction, such
as decMCTS [45] or SGA [46], stem from the notion of
mutual information of range sensors [47]. The authors in [48],
[49] have proposed a finite-horizon decentralized planner,
called DSGA (Distributed Sequential Greedy Assignment),
which relies on sampling-based Monte-Carlo Tree Search
(MCTS) [50]. The paths are allocated to the robots by solving
a submodular maximization problem over matroid constraints
with greedy assignment heuristics. More recently, in [14],
the authors have established connections between information-
theoretic and volumetric coverage objectives in terms of ex-
pected coverage, for teams of mobile robots. Finally, a similar
matroid-constrained submodular maximization problem has
been considered in [15] for multi-sensor NBV planning, and
real-world experiments have been conducted with two KUKA
robot arms. One NBV per sensor and per iteration is com-
puted, and viewpoint sampling and trajectory generation are
performed offline, by assuming a partial prior knowledge of
the environment (location of the target object).

Based on this literature review, we can notice that a large
body of research has leveraged volumetric exploration for
3D reconstruction, but without taking the problems of surface
completeness and occlusion explicitly into account. Moreover,
even though the surface inspection problem with mobile
robots is becoming increasingly popular, to the best of our
knowledge, no multi-robot formulation exists.

In this work, we propose a generic NBV planning strat-
egy inspired by the mixed approaches, to solve the surface
inspection problem and cooperatively reconstruct large-scale
environments with a team of mobile robots. Our frontier-
based method relies on a volumetric representation of the
surface, which allows to identify areas of interest to be
scanned. Candidate viewpoint configurations are generated
from these areas in compliance with the sensing and dynamic
constraints of the robots, and they are clustered according to
their location in space. In order to find the best path for each
robot, we evaluate the interest of visiting a specific cluster.
By successively solving this assignment problem, we find
the paths which allow to explore the unknown environment
and maximize the completeness of reconstructed surface,
while ensuring short travel distances and execution times.
The proposed strategy, called TSGA (TSP-Greedy Allocation),
has been validated via extensive experiments with multiple
quadrotor UAVs and wheeled robots, by using a centralized
architecture. A distributed variant, referred to as dist-TSGA,
is also introduced and tested via numerical and real-world
experiments. With dist-TSGA, it is possible to perform cluster
assignment in a decentralized fashion, and to keep track of the
map under construction.

III. PROBLEM FORMULATION

In this paper, we consider a team of N cooperative mobile
agents1. Let qi ∈ SE(m) be the pose of agent i, and qi0
its initial configuration, i ∈ {1, 2, . . . , N}: m = 2 in the
case of ground vehicles, and m = 3 in the case of aerial
vehicles. We assume that all agents are equipped with an
accurate localization system which allows to estimate their
pose with respect to a global reference frame, and that a robust
low-level trajectory tracking algorithm is available. Each agent
is equipped with a forward-facing depth sensor with limited
field-of-view (FOV) and sensing range, extrinsically calibrated
with respect to its body frame. The agents should cooperatively
scan an unknown 3D environment (for instance, a building),
characterized by its surface. A mapping algorithm is required
to build a representation of the reconstructed surface and iden-
tify the free space for navigation. We consider a volumetric
mapping, which allows to build a map M as a collection of
discretized 3D space elements. These elements, referred to as
voxels v ∈M , represent unknown, occupied, or empty space.
Let X ⊂ M be the set of unknown voxels, and A ⊂ M

1We will use the terms “agent” and “robot”, and “path” and “trajectory”
interchangeably, throughout the paper.

Fig. 1. 2D illustration (from left to right) of NBV planning for surface
inspection via volumetric mapping. White, blue, and black voxels represent
unknown, empty, and occupied voxels, respectively. The surface is depicted
in orange.
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Fig. 2. General flow chart of our multi-agent surface-reconstruction architectures: [left] centralized, [right] distributed. The internal structure of the perception
module is shown inside the green shaded box. The intra- and inter-block connections are represented with black solid and red dashed lines, respectively.

the set of known voxels such that X ∩ A = ∅. Moreover,
let O ⊂ A be the set of occupied voxels, and E ⊂ A the
set of empty voxels. The goal of the scanning process is to
discover unknown voxels: in particular, a voxel is said to be
scanned when it becomes known, once at least one agent has
detected it. Similarly to [9], [12], [39], we aim at identifying
the incomplete surface within a given volume. Based on [39,
Equ. (2)], we propose the following general definition of
incompleteness of a surface model:

Definition 1 (Incomplete surface element): We call In-
complete Surface Element, or ISE, for short, a voxel v ∈ M
lying on the surface at a frontier, near both the unknown and
empty space. Let C be the set of all ISEs. A voxel v ∈ C
if and only if

a) v ∈ E, (empty)

b) ∃u ∈ N 6
v s.t. u ∈ X, (unknown)

c) ∃o ∈ N 18
v s.t. o ∈ O, (occupied)

where N 6
v and N 18

v denote the 6- and 18-connected voxel
neighborhoods of v, respectively.

Definition 2 (Remaining incomplete surface): Let Q be
the set of all collision-free configurations of an agent, and
let Qc ⊆ Q be the set of all configurations from which an ISE
v ∈ C can be scanned. The remaining incomplete surface is
then defined as

Crem =
⋃

v∈C

{
v | Qc = ∅

}
.

We will use the function pij,k(s) : [0, 1] → SE(m), m ∈
{2, 3}, to define the path of agent i from configuration j to
configuration k, where pij,k(0) = qij and pij,k(1) = qik, i ∈
{1, 2, . . . , N}. We assume that pij,k(s) is collision-free and
feasible for agent i (i.e. the kinematic/dynamic constraints of
the robot are satisfied along the path). The problem studied in
this paper can then be formally stated as follows.

Problem 1 (Multi-agent inspection problem): Consider
a team of N agents with initial configurations
qi0 ∈ Q, i ∈ {1, 2, . . . , N}. The multi-agent inspection
problem asks to find collision-free paths pi0,f (s) visiting the

poses qik, k ∈ {0, 1, . . . , f}, which allow the agents to scan
the set Cins = C \ Crem of all ISEs contained in the current
reconstructed map M .

By progressing along their paths
pi0,f (s), i ∈ {1, 2, . . . , N}, the agents are able to disclose
the unknown space, discover new ISEs, and iteratively solve
the inspection problem until Cins = ∅. Fig. 1 graphically
illustrates this idea for a planar quadrotor.

Based on these premises, in the next section, we will provide
a general overview of the approach proposed in this work to
solve Problem 1.

IV. OVERVIEW OF THE PROPOSED APPROACH

In this paper, we introduce a generic multi-agent system for
3D surface reconstruction of unknown environments, which
admits both a centralized and a distributed implementation.
The centralized and distributed architectures depicted in Fig. 2,
are well suited to accommodate multiple ground or aerial
robots, or a combination thereof (i.e. heterogeneous fleets).
The architectures include two distinct modules: a perception
module (green block in Fig. 2), which extracts the ISEs
(cf. Sect. III) from a volumetric map estimated online, and
a planning module (blue and orange blocks in Fig. 2), that is
in charge of computing the paths of the robots.

A mapping algorithm acts as the front-end of the perception
module, which takes as input the depth maps generated by the
on-board sensors (RGB-D cameras, stereo-rig, etc.) together
with their associated poses, and integrates them into a 3D vol-
umetric map used for reconstruction (i.e. extraction of ISEs)
and for navigation (i.e. collision-free path planning and track-
ing in the free space). The map is then processed for the
duration of the overall mission in order to extract new ISEs,
which are the centerpieces of the planning module. We chose
the TSDF representation for its attractive properties, and
in particular for its ability to implicitly represent surfaces
(see Sect. V-A). In fact, it allows to generate configurations
in the free space that efficiently cover the ISEs, while tak-
ing the specificities of the environment and depth sensors
(range, resolution, etc.) explicitly into account (see Sect. V-B).
However, note that other volumetric mapping methods could
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be used as well, with minor modifications. The centralized
architecture incrementally integrates all input data (depth
maps and poses from all agents) into a unique map on a
single base station, where all the ISEs are generated. In the
distributed architecture, instead, each agent computes its own
local map, henceforth referred to as “patch” and identified
by a unique ID, based on its own sensing and localization
information. The patches are exchanged via a distributed
algorithm based on manifold mapping [22].

The planning module guarantees that the agents complete
the surface reconstruction. The scanning process stops when
no ISEs are left. Given the list of poses provided by the
perception module, one can schedule the visit of each con-
figuration via an appropriate TSP-based path finder. To this
end, the TSGA planner (TSP-Greedy Allocation) clusters sets
of configurations according to their location in space, in order
to identify and rank areas of interest in the incomplete map.
It then generates a directed graph which represents the travel
utility of visiting a cluster, depending on the capabilities of
each robot (terrestrial or aerial). In order to maximize the
cumulative utility function at the team level, collision-free
paths are extracted from the digraph and broadcast to the
robots (see Sect. VI-A). The high-level paths are sent to the
low-level planners, which generate sampling-based trajectories
for the agents and gather the odometric and path-allocation
information for collision avoidance (see Sect. VI-B). In the
distributed architecture, global-map inconsistencies, due, e.g.,
to patch losses or communication delays, may result in clus-
ters assigned to multiple robots. To overcome this problem,
the low-level planners exchange their current paths with the
robots, check the consistency between the individual and
team-wise allocation, and wait for a re-assignment, if needed.
Finally, trajectory tracking is performed with standard con-
trollers (e.g. PID or Model Predictive Control).

V. PERCEPTION

A. Surface-based mapping

A volumetric map M , here based on a TSDF representation,
is used to detect non-reconstructed areas, as defined by the
extraction of ISEs (see Sect. V-B). The TSDF map [18]
consists of a voxel grid, where each voxel contains a truncated
signed distance value φ ∈ R and a positive weight w.
It implicitly represents surfaces, which correspond to the zero
level set of the distance field: hence, the TSDF volume is
a volumetric representation of a surface. Algorithms such as
MarchingCubes [51] can be used to extract a triangular mesh,
which is an explicit representation of those surfaces, e.g. for
visualization. The map is built in an incremental fashion by
sequentially integrating depth measurements. In order to keep
the map consistent, the pose of the sensor on-board the robot
must be used to relocate depth measurements with respect
to the map frame. We assume that this pose is provided
by a localization system which relies, for example, on a
visual SLAM algorithm (cf. [52], [53]), and that the pose
estimates are sufficiently accurate. At each time step and
for each voxel v, the integration is performed by recursively
computing a weighted mean of the distance. In order to take

into account uncertainty due to sensors [54], [55], the new
measurements are weighted by an inverse-squared distance
increment 1/z2q(v), where zq(v) is the distance between
voxel v and the current pose q of an agent2. The state
of a voxel v is set to known (either occupied or empty),
if w(v) ≥Wth and to unknown if w(v) < Wth, where the
positive threshold Wth depends on the sensing range of the
depth sensor.

B. ISE extractor and viewpoint generation

Similarly to [39], a voxel v ∈ M is considered as an ISE,
i.e. v ∈ C, as stated in Definition 1, if it verifies the following
conditions:
a) w(v) ≥Wth ∧ φ(v) > 0, (empty)

b) ∃u ∈ N 6
v s.t. w(u) < Wth, (unknown)

c) ∃o ∈ N 18
v s.t. w(o) ≥Wth ∧ φ(o) ≤ 0. (occupied)

Definition 3 (Scanned element): A voxel v ∈ M which
satisfies, w(u) ≥Wth, ∀u ∈ N 6

v , is called a scanned element.

The direction nv to observe the ISE v, is determined from
the gradient of the weight function ∇w(x, y, z), which can be
computed as

nv =
∑

c∈N 26
v

w′(c)
c− v

‖c− v‖
, nv =

nv

‖nv‖
,

where N 26
v is the 26-connected neighborhood of v and the

weight function

w′(c) =

{
−Wth if voxel c is occupied,

Wth otherwise.

Note that the last definition differs from [39, Equ. (6)], since
w′(c) takes the value Wth if the voxel is unknown or empty
(in our experiments, we empirically observed that this variant
is more robust against noisy data). A sensor configuration is
generated along the direction nv at a distance δpose from the
corresponding voxel v (see Fig. 3). The sensor is oriented
towards v along −nv, and the value of δpose depends on the
sensing range of the depth sensor.

Note that in some recent works [12], [33], [56], the authors
sample multiple viewpoints within a cone whose principal axis

2In the interest of clarity, in the remainder of this section, we will drop the
superscript i, and we will simple write q instead of qi.

Fig. 3. [left] Two-dimensional example of ISE v (filled green square).
Its 2D neighborhood is represented by a dashed green square. Unknown voxels
are black, occupied are gray, and empty voxels are white. The reconstructed
surface is depicted as a blue segment, and the sensor configuration and its
frustum as a dark blue triangle. [center] Direction from the contour, nv , and
corresponding viewpoint configuration at distance δpose from v (light blue
triangle). [right] Snapshot of a simulated reconstruction in progress, with ISEs
and their directions from the contour (green arrows).
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is aligned with the viewing direction from the surface, and
then select the most promising one by solving an optimization
problem. However, this approach incurs extra computational
costs, and to keep our formulation simple, we preferred not to
include it here.

If two poses qj ,qk ∈ Q generated from the ISEs
vj ,vk ∈ C, are located within a short distance (i.e.
dist(qj , qk) < ε, for a small ε > 0), and their viewing
directions nvj , nvk

are almost parallel (i.e. |nvj · nvk
| ' 1,

where “·” denotes the dot product), then these configurations
are merged into a single viewpoint, by averaging their po-
sitions and orientations. This allows to reduce the overall
number of poses, without missing key information. Even
after the merging step, a large number of candidate poses
pointing towards the ISEs is typically generated in large-
scale environments, which is not compatible with the planning
objective. To avoid this problem, neighboring viewpoints are
grouped into Nc clusters Uj , j ∈ {1, 2, . . . , Nc} (the idea,
as will become apparent later, is to assign each cluster to an
agent, in order to improve efficiency). The set of all clusters
is denoted by U = {U1, U2, . . . , UNc}. A configuration ql
belongs to a generic cluster U if ∃qj ∈ U such that d(τ jl ) <
dν , where d(τ jl ) denotes the length of the path τ jl between
ql and qj on a directed graph (to be defined in Sect. VI-A),
and dν is an upper bound on the distance. If no neighbors
are found, dν is increased up to a maximum value dmax

ν .
Once the clusters have been defined, their respective level
of informativeness needs to be quantified, since each cluster
does not necessarily contain the same number of viewpoints.
To evaluate a configuration, we use the ray-tracing method [35]
from a frontier-based perspective, i.e. the ISEs that can be
seen, are counted. Let Cq be the set of all ISEs seen from
viewpoint q and let CU =

⋃
q∈U Cq. The gain g(U) of

cluster U is then defined as

g(U) =
|CU |
|C|

, (1)

where |CU | denotes the cardinality of the set CU .

C. Centralized vs distributed mapping

In the centralized architecture, all the computations are
performed on the base station. The agents send their poses
and depth maps to it, and a GPU-based algorithm3 fuses
them to create the global TSDF volume. The ISE extractor
then computes the ISEs for the whole team. The correct
operation of the base station is crucial to the centralized
architecture: in fact, if it crashes, a system breakdown occurs.
If the communication with a robot is temporary broken, the
robot freezes, and a degradation of planning performances is
experienced. On the other hand, in the distributed architecture,
a CPU-based distributed manifold mapping founded upon [24],
enables each agent to compute TSDF (sub-)maps on its
own embedded computer. The general block diagram of the
mapping module is depicted in Fig. 4. To synchronize the
map among the agents, it is subdivided into different patches.

3When the depth maps sent by all the agents are fused, a GPU implemen-
tation is needed to ensure real-time performance.

Each patch is a local TSDF with a unique ID. It is associated
with a local frame (i.e. the frame of the first depth map
processed), which is used to integrate the depth maps until
a certain user-defined event is triggered. Originally, in [24],
a distance-traveled criterion was considered, for simultaneous
localization and mapping (SLAM). Here, we assume that a
new patch is created, when a certain number of depth maps
has been integrated into the current map. Once this occurs,
the current patch is locally stored into the agent’s private
map and shared with the others, and a new “current” patch
is initialized. Moreover, for each new patch stored, the list of
patch IDs is updated and broadcast to the other agents. Thanks
to this ID list, a client-server protocol allows the other agents
to request a missing patch which might have been lost during
the first communication attempt. The request is processed by
the closest agent which owns it. Finally, when a robot receives
a patch sent by another agent, it stores it locally into its
public map.

An approximation of the global map, denoted by M̂i, can
thus be constructed by agent i, as the union of its current
patches, its private map, and its public map. We improved
the method proposed in [24], in order to rebuild the TSDF
map from the collection of patches. In fact, the volumes
are aggregated, and the overlapping regions between the
patches are fused together by summing up the weights and
computing the weighted average of distance values for each
TSDF voxel. To not overload the communication network, the
current map of an agent is not accessible to the others until
its completion. Therefore, even excluding the communication
losses, the agents do not have access to the full map M ,
simultaneously. However, it is worth pointing out that our
list-and-request mechanism to synchronize the older patches
between the agents, ensures that the majority of the global map
M is available to the agents, except for the most recent patches
which are currently being built by each agent. Following
the procedure described in Sect. V-B, the ISEs are extracted
by agent i from M̂i, and Ûi = {U i1, U i2, . . . , U iNC

} is used
to denote the set of clusters that should be observed to
complete the surface reconstruction process. Finally, the gains
are computed with equation (1), as in the centralized case.
Fault tolerance is an asset to our architecture: in fact, in
the event of a communication failure, each agent can evolve
independently using the last map exchanged. New patches are
locally stored as the agent reconstructs the environment on
its own, and if communication is re-established, they can be
requested by the team, once the IDs list has been updated.

VI. PLANNING

A. Next-Best-View planning

The high-level planner allocates clusters to the agents and
schedules their visit according to a given common TSDF
map (or its best approximation, in the distributed architec-
ture). To formulate our optimization problem, we introduce
the weighted directed graph G = (U , E , {aUV }(U, V )∈E),
where U is the set of clusters, E is the set of edges, and
{aUV }(U, V )∈E is the collection of weights associated to the
edges. Each directed edge eUV ∈ E connects cluster U
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Fig. 4. Distributed mapping: inner structure of the module. The intra- and
inter-block connections are represented with green solid and red dashed lines.

to cluster V , with U, V ∈ U . It is assumed that the initial
configuration of agent i belongs to one of the clusters of G,
i.e. qi0 ∈ U . Let qik be a configuration in cluster U , and qil ,
qim two configurations in cluster V . Then, the weight aUV
between cluster U and V is the 6-tuple

aUV =
{
τ lk, τ

m
l , g(V ), d(τ lk), d(τml ), fUV

}
, (2)

where
• τ lk denotes the path from qik ∈ U to qil ∈ V , i.e. the path

between cluster U and cluster V ,
• τml denotes the shortest Hamiltonian path [57] including

configurations of V , which starts at qil and ends at qim,
• g(V ) is the gain of cluster V , as defined in (1),
• d(τ lk) is the cost associated with the inter-cluster path τ lk,

i.e. the length of τ lk,
• d(τml ) is the cost associated with the intra-cluster

path τml , i.e. the length of τml ,
• fUV is the utility function defined as

fUV = g(V ) exp
(
−λtc d(τ lk)− λic d(τml )

)
, (3)

where λtc and λic are positive penalty terms for the inter-
cluster and intra-cluster costs, respectively, which can be
used to promote the visit of clusters far apart or large
clusters. Their value depends on the motion capabilities
of the agents (i.e. ground vs aerial robots). A similar
utility function was originally proposed in [58].

The weights on the directed graph G in (2), quantify the
potential benefit of choosing a certain path, to pursue the 3D
reconstruction: in fact, the higher the value of the function
fUV , the more convenient is the path. Note that fUV > 0,
since g(V ) > 0.

Our inspection problem can be stated as a maximum Asym-
metric Traveling Salesman Problem (maxATSP), i.e. as the
problem of finding a maximum-utility Hamiltonian path p
on G, see [7]. In a graph, a Hamiltonian path is an undi-
rected or directed path that visits each vertex exactly once.

In what follows, we will denote by maxATSP(U), the set
function that takes the set of clusters U as input and outputs
its utility value p, from which the path p can be computed. A
linear programming formulation of maxATSP is

max
∑
U∈U

∑
V ∈U

fUV xUV

s.t.
xUV ∈ {0, 1}, U, V ∈ U , U 6= V,∑
U∈U, U 6=V

xUV = 1, V ∈ U \ {q0},

∑
V ∈U\{q0}, V 6=U

xUV ≤ 1, U ∈ U ,

∑
V ∈U\{q0},

x{q0}V = 1, {q0} ∈ U ,

∑
U∈S

∑
V ∈S,V6=U

xUV ≤ |S| − 1, ∀S ( U , |S| > 2,

where {q0} denotes the cluster which only contains the initial
configuration, S is a proper subset of U , and xUV = 1, if the
edge belongs to the optimal path, and xUV = 0, otherwise.
maxATSP is solved by converting it into a symmetric TSP
(i.e. a standard TSP) and then by using the classical Lin-
Kernighan heuristic [59].

Let U i be the set of clusters assigned to agent i ∈
{1, 2, . . . , N}, such that

⋃N
i=1 U i = U . Then, the assignment

problem can be stated as follows

max
U1, ...,UN ⊂U

{ N∑
i=1

maxATSP(U i)
∣∣ U i ∩ U` = ∅,

i 6= `,

N⋃
i=1

U i = U
}
,

(4)

where
∑N
i=1 maxATSP(U i) is a non-decreasing set function,

and the space of feasible paths has the structure of a simple
partition matroid [60]. Problem (4) can be approximately
solved via local greedy heuristics (cf. [61]–[63]), which seek
for the local maximum utility, based on an initial ranking of
the items to assign. The centralized TSP-Greedy Allocation
(TSGA) procedure [7] is reported in Algorithm 1 and its dis-
tributed version (dist-TSGA) in Algorithm 2 (see Sect. VI-C).
Note that the single-agent algorithm is a special case of the
centralized multi-agent algorithm with N = 1.

At each ISE extraction, the clusters are formed, and the
shortest Euclidean distance to each agent is computed. These
distances are then arranged in ascending order for the greedy
heuristic. The TSGA planners greedily assign each cluster to
an agent. More specifically, a cluster is assigned, when it
locally maximizes the overall utility for the team. The path
of agent i, e.g. the viewpoint sequence which results from the
allocated clusters U i, is denoted by piUi , and the associated
utility value by pi. Once piUi is computed, it is sent to the
low-level planner. Unlike the classical insertion methods, in
which a cluster is added to the path of a robot path [64],
maxATSP is solved for the extended cluster set U i ∪ V with
V ∈ U \ U i. This strategy maximizes the individual utility
of the agents over disjoint sets, so as to maximize, in turn,
team-wise utility. Moreover, it is amenable to a distributed
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implementation, since only local information is used (e.g. local
free space, ISEs, U i related to the map of agent i). On the long
run, the maximization of the utility function pushes the agents
towards the most valuable areas, in terms of completeness.
For instance, this might prompt an agent to visit areas at the
frontier between a known and an unknown surface containing
multiple ISEs, and scan them all (cf. equation (1)).

B. Low-level planner

The low-level planner computes the path of an agent,
using Lazy PRM? from the Open Motion Planning Library
(OMPL) [65]. It leverages the path found by the TSGA planner
(Algorithm 1 or 2) and the TSDF-map updates. Given a start
and an end pose, it computes the path of a robot in the
free space, given by the TSDF volume (on the plane for
ground vehicles, and in the 3D space for aerial vehicles).
By gathering all odometric information, each agent knows the
position and orientation of the others, and it is then able to
detect when another robot is near, when it faces it, or when
it will cross its path. A TrafficPolicy function takes care of
collision avoidance: for example, a robot might be asked to
step aside to avoid a frontal impact, or to temporarily stop and
wait until a teammate crossing its path, is outside its FOV.
The function takes the robot’s speed into account, and relies
on a safety distance threshold for collision avoidance. On the
other hand, the ObstacleCheck function triggers an emergency
stop via a distance threshold to the surface (obtained from the
TSDF), if a new obstacle is detected along the path.

Note that an ISE may be potentially scanned before the
planned visit of an agent. To avoid unnecessary back-and-forth
motions, the UtilityCheck function computes the remaining
ISEs along the paths since the last planning iteration, and it
waits for a possible update. This ensures a reactive visit of
uncovered ISEs, as the map grows over time.

The high-level planner may generate paths of various length:
hence, the agents may finish their tours at different time
instants. When an agent has completed its current path, it
continues the reconstruction asynchronously, with the latest
path provided by the high-level planner.

C. Centralized vs distributed planning

In the centralized architecture, the map is directly generated
from the depth maps sent by the agents. The centralized map
is used for the extraction of the ISEs and the determination
of the configuration clusters. A resolution of problem (4) on
the base station allows to compute the paths p1

U1 , . . . ,pNUN ,
which are broadcast to all the agents (cf. Algorithm 1).

Algorithm 1: TSP-Greedy Allocation (TSGA)
Set U i = ∅ and pi = 0 for each agent i ∈ {1, 2, . . . , N};
foreach cluster V ∈ U do

i← arg max
k∈{1,2,...,N}

{maxATSP(Uk ∪ V )− pk};

U i ← U i ∪ V ;
pi ← maxATSP(U i);
piUi ← {pi, U i};

Send paths p1
U1 , . . . ,p

N
UN to the agents (low-level planner);

Algorithm 2: dist-TSGA

Set Û ii = ∅ and pii = 0 for agent i ∈ {1, 2, . . . , N};
foreach cluster V ∈ Ûi do

`← arg max
k∈{1,2,...,N}

{maxATSP(Ûki ∪ V )− pki };

if ` = i then
Û ii ← Û ii ∪ V ;
pii ← maxATSP(Û ii );
piÛi

i
← {pii, Û ii };

Send path piÛi
i

to the low-level planner;

In the distributed architecture, due to material constraints
(such as, saturation of communication network or packet
losses), a newly-created patch may not be received by all the
agents. Hence, in practice, the agents do not have the same
knowledge of the full map. Nevertheless, provided that the
patch request is frequent enough, agent i may have a rapid
access to a full public map: it can thus update its own local
version of the global map M̂i, and synchronize it with the map
of the other agents (see Sect. V-C and Fig. 4). Recalling that Ûi
denotes the set of all clusters generated from the ISEs extracted
by agent i from its current global map M̂i, let Û ii ⊂ Ûi be the
set of clusters assigned to agent i, such that

⋃N
j=1 Û

j
i = Ûi.

Based on the known set of clusters Ûi, each agent performs its
own cluster allocation in a distributed way, to compute the best
path. Once the assignment step is done successfully, agent i
sends its path pi

Ûi
i

to the low-level planner (cf. Algorithm 2).
Because of possible inconsistencies in the global maps,

multiple agents might be assigned to the same viewpoints
of a cluster. To avoid such a scenario, the low-level planner
broadcasts the path that is currently followed by an agent,
to the others. In case of redundancy, the RedundancyCheck
function of each low-level planner evaluates each agent’s
progress along the current path. The priority is given to the
first agent which can reach the viewpoint, by taking its ranking
in the list of visits and its current location, into account. The
agents which were not granted priority, keep on moving until
their last maneuver before the redundant cluster, and then wait
for a new high-level path.

VII. NUMERICAL EXPERIMENTS

In this section, the centralized and distributed multi-robot
systems are validated via extensive simulations with synthetic
data. As a complement to our preliminary results in [6], the
single-robot architecture is also compared with [8], using the
simulation environment of the authors. Our baseline multi-
agent planner, to test TSGA and dist-TSGA, is the Nearest
Neighbor (NNB) greedy algorithm. In NNB, only one cluster
is allocated to each robot by locally computing maxV ∈U fUV
for the updated map (cf. equation (3)). Re-planning is thus very
fast compared to TSGA’s, but only one cluster at a time is set
to be visited. The different methods are evaluated in terms
of map accuracy, surface completeness, total path length, and
execution time.
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1) Robots: RotorS simulator [66] has been used to model
quadrotor UAVs equipped with a stereo camera, in the ROS-
Gazebo environment. We considered 3 and 5 UAVs in our
tests, and report the single-robot case previously studied in [6],
for the sake of completeness. Each UAV has 4 degrees of
freedom: its 3D position [x, y, z]T and its yaw angle ψ.

2) Simulation setup: We chose an industrial plant bench-
mark, which is well-known in the volumetric exploration
literature [11]. The Powerplant model4 (see Fig. 5-[top-left])
was scaled to fit in a 65×42×15m3 box (as a consequence, the
five flues have the same height). To study the impact of the two
penalty terms in the utility function (3), on the reconstruction
accuracy/completeness, we also considered the monumental
Statue of Liberty5 (SoL), of size 20× 20× 60m3, see Fig. 5-
[top-left]. The simulation parameters used in the two scenarios
are reported in the first and second column of Table II.

To represent the depth-map uncertainty, we considered a
Gaussian noise model. The standard deviation associated with
a pixel, corresponds to the depth-value sensing error of the
corresponding point located at a distance z, i.e. σ(z) = |ed|

fB z
2,

where |ed| is the magnitude of the disparity error, f is the focal
length in pixels, and B is the baseline of the stereo camera on
the UAVs, in meters. Following [54], [67], the raw depth map
was blurred out by using a 3 × 3 kernel. In the single-UAV
and centralized architecture, the TSDF volume was generated
with the algorithm proposed in [68], that we adapted to multi-
robot case. Our GPU-based algorithm allows to rapidly build
and update (at about 1 Hz) the TSDF volume, as new depth
maps sensed by robots are sent to the base station. Surface
mesh reconstruction is performed with MarchingCubes [51],
and the TSDF weight increment has been modified to be
the inverse of squared distance, as reported in Sect. V-A.
Distributed mapping is performed with the method proposed
in [24], which allows each robot to compute its own local
volume, and send it to other robots, so that a global map can be
obtained. The event that triggers the integration and broadcast
of a new patch to the other robots, is that 5 depth maps have
been processed (cf. Sect. V-C). Unlike centralized mapping,
distributed mapping is CPU-based, and it can be run on an
embedded computer with limited resources. Lazy PRM? from
OMPL [65] is used by the low-level planner (see Sect. VI-B)

4http://models.gazebosim.org/
5https://free3D.com/

TABLE II
PARAMETERS USED IN THE NUMERICAL EXPERIMENTS.

Parameter Powerplant SoL CB
Voxel resolution rv [m] 0.3 0.15 0.2
Threshold Wth 0.3 0.3 0.3
emax [m] 0.2598 0.1299 0.1732
Camera range [m] [1.6, 8] [1, 5] [1.5, 6]
Camera FOV [deg.] (H, V) 90 × 60 90 × 60 90 × 60
ed [pixels] 0.1 0.1 0.1
f [pixels] 376 376 376
B [m] 0.11 0.11 0.11
Collision radius [m] 1 1 1
UAV nominal speed [m/s] 0.5 0.5 0.5
δpose [m] 4.7 3.6 2.5
dν [m] 2.0 2.5 1.5
dmax
ν [m] 5 5 5

Penalty term λtc 0.3 0.17 0.25
Penalty term λic 0.03 0.15 0.08

to compute collision-free paths for the UAVs (the collision
radius is set to 1 m). The UAVs track the generated paths using
Model Predictive Control [69], with a reference translational
velocity fixed to 0.5 m/s.

The UAVs are initially located in the same area, around the
base station (magenta dots in Fig. 5-[Columns 1 through 3]).
The quantitative results of our numerical experiments are
reported in Table III. The single-UAV architecture with perfect
and noisy depth measurements (denoted by [6] and [6]∗,
respectively), has been used as a baseline, and compared with
the centralized multi-robot architectures (with NNB and TSGA
planners), and the distributed architecture (with the dist-TSGA
planner), for a fleet of 3 and 5 UAVs. The last architecture
has been only tested with Powerplant. To obtain statistically-
significant values, 10 trials per architecture and per team of
robots, were performed. For more details about the hardware
platforms used in the simulations, the reader is referred to [70].

3) Metrics: The architectures have been evaluated in terms
of cumulative path length and completion time (to fully cover
the 3D environments). This includes travel time and sensing
time (e.g., one depth map integration and map update). The
reconstructed 3D surface has been evaluated with CloudCom-
pare6 using the M3C2 (Multiscale Model to Model Cloud
Comparison) algorithm [71]. To assess how well the surface
is covered, the reconstructed mesh is compared with a dense
point cloud sampled on the ground truth (GT) mesh. The
deviation is quantified via a cloud-to-mesh comparison (see
Fig. 5-[4th column]). For a fair evaluation, all the invisible
surfaces of the GT mesh were pruned beforehand (e.g., the
interior floor and walls), and the analysis was restricted to the
exterior surface mesh only. A point belonging to the GT point
cloud is considered to be covered, if the shortest distance to
this point along a normal to a mesh facet, is less than the
length of the half diagonal of a voxel, i.e. emax = rv

√
3/2,

where rv is the voxel resolution. As a result, the more
points are accurate, the better the coverage is. The quality
of the recovered surface is evaluated in Table III (average and
standard deviation of the signed distance error with respect to
the GT point cloud and Root-Mean-Square Error).

4) Choice of penalty terms: The selection of penalty terms
λtc and λic in the utility function (3), depends on the nature
of the 3D environment to explore. To find the combination
of parameters which guarantees the shortest distance traveled,
multiple reconstructions of Powerplant and SoL have been
carried out with a single robot and different values of λtc
and λic. The results are compiled in Table IV, and indicate
that the shape of the environment has a clear impact on
the tuning of the penalty terms. In particular, in wide box-
like environments as Powerplant, the majority of ISEs are
uncovered near sharp edges or occluded regions, and tend to
appear in groups separated by large layers of known space. To
minimize the total path length, inter-cluster utility should then
take priority over intra-cluster utility, i.e. λtc � λic. On the
other hand, the pedestal of the statue excluded, SoL predom-
inantly consists of round surfaces and the average distance
between two clusters is much smaller than in Powerplant.

6https://danielgm.net/cc/



IEEE TRANSACTIONS ON ROBOTICS, ACCEPTED FOR PUBLICATION AS AN EVOLVED PAPER, MARCH 14, 2023 10

Fig. 5. Numerical experiments: [top-left] Powerplant and SoL models. Reconstructed meshes and 3D exploration paths p1
0,f , p2

0,f , p3
0,f (green, red,

blue) of the 3 UAVs for the two models, obtained with: [bottom-left] distributed architecture; [2nd column] centralized architecture; [3rd column] centralized
architecture with NNB planner. The initial locations of the UAVs are marked with magenta dots. [4th column] Signed distance error: the color bar shows the
error in meters with respect to the ground truth, computed with CloudCompare’s M3C2 plugin.

TABLE III
RESULTS OF THE NUMERICAL EXPERIMENTS WITH POWERPLANT, SOL AND CB (STATISTICS OVER 10 TRIALS).

Powerplant
Number of UAVs 1 3 5
Algorithm [6] [6]∗ NNB Central. Distrib. NNB Central. Distrib.
Path length [m] 780 785 1038 790 781 1113 879 872
Completion time [min.] 32 33′10′′ 11′09′′ 10′20′′ 9′56′′ 6′51′′ 6′22′′ 6′09′′

Time gain [%] w.r.t. [6]∗ − − 66.4 68.8 70.0 79.4 80.8 81.5
Surface coverage [%] 91.5 90.4 90.0 91.0 95.9 90.5 90.6 95.6
M3C2 avg. error [cm] 0.14 −0.13 −0.15 −0.26 0.62 −0.11 −0.3 −0.73
M3C2 std. error [cm] 5.85 7.51 7.52 7.54 3.33 7.50 7.52 3.43
RMSE [cm] 5.86 7.51 7.52 7.55 3.39 7.50 7.52 3.51

SoL CB
Number of UAVs 1 3 5 1
Algorithm [6] [6]∗ NNB Central. NNB Central. [8] [6]
Path length [m] 547.0 550.0 733.0 721.0 580.0 574.2 641 632
Completion time [min.] 36′ 37′ 13′10′′ 10′18′′ 7′30′′ 6′45′′ 27′38′′ 25′20′′

Time gain [%] w.r.t. [6]∗ − − 64.4 72.2 79.7 81.8 − −
Surface coverage [%] 92.3 91.2 91.1 91.0 90.9 91.1 94.6 95.7
M3C2 avg. error [cm] 0.29 −0.02 −0.80 −0.03 0.06 −0.01 −1.06 0.28
M3C2 std. error [cm] 3.41 3.67 3.61 3.69 3.65 3.66 7.22 6.34
RMSE [cm] 3.43 3.67 3.69 3.69 3.65 3.66 7.29 6.34

Hence, similar penalty terms are preferable (i.e. λtc ' λic).
5) Results: From an inspection of Table III, we can see that

for a single UAV, the presence of noise has an impact on mesh
accuracy, but that the navigation performance remains largely
unaffected. We compared our single-robot algorithm with [8],
by adapting our code to the simulator developed by the
authors. We kept their default parameters and configurations,

TABLE IV
PENALTY TERMS AND PATH LENGTHS FOR POWERPLANT AND SOL.

Powerplant
λtc 0.35 0.3 0.15 0.03 0.01

λic 0.01 0.03 0.15 0.3 0.35

Path length [m] 787 780 795 814 822

SoL
λtc 0.35 0.3 0.17 0.03 0.01

λic 0.01 0.03 0.15 0.3 0.35

Path length [m] 578 559 550 587 601

and selected the CityBuilding (CB) environment (see the third
column of Table II). As we can notice in Table III, our method
works slightly better than [8] in terms of completion time,
path length, surface coverage, and accuracy. The algorithms
described in [11], [40] exhibit a similar completion time with
Powerplant. The deviation is more pronounced with SoL:
in fact, the algorithm in [40] takes twice as long to finish
the exploration. As the number of robots grows, the execution
time decreases: in fact, with Powerplant (see the 4th row
of Table III), the distributed (centralized) architecture with
3 UAVs is 70.0% (68.8%) faster, compared to the single-robot
case. With 5 UAVs, the distributed (centralized) architecture
is 81.5% (80.8%) faster, compared to a single quadrotor.
Similarly, with SoL, TSGA achieves the task 72.2% (81.8%)
faster with a fleet of 3 UAVs (5 UAVs), compared to the single-
robot case. The distance traveled per UAV is shorter than that
of a single UAV, but the total path length is larger, for any
team of aerial vehicles.
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TABLE V
COMPARISON BETWEEN THE CENTRALIZED TSGA AND NNB PLANNERS.

Powerplant SoL
Number of UAVs 3 5 3 5
Path length gain [%] 23.90 21.00 1.64 1.00
Completion time gain [%] 7.32 7.06 21.80 10.00

The centralized TSGA also guarantees a shorter completion
time and shorter distances compared to the classical NNB
planner (see Table V), even with SoL. In fact, the profile
of the statue and the presence of numerous contiguous ISEs
should be more favorable, in principle, to fast local planners
(for more details, the reader is referred to [7, Sect. V]). With
Powerplant, the centralized architecture ensures that all the
incomplete reachable regions are ultimately covered (surface
coverage ranges between 90.4% and 91.5%). The overall
reconstruction accuracy is better with the distributed mapping
algorithm. Coverage improves as well, reaching 95.9% with
3 robots and 95.6% with 5 robots. Since the performance of
MarchingCubes is dictated by the voxel size, the reconstructed
mesh is more accurate, if the resolution is high. However, if
the environment to explore is large, a high resolution entails
resource-intensive mapping and ISE-extraction steps, which
ultimately make the whole reconstruction process prohibitively
expensive. Therefore, a balance between computational effi-
ciency and reconstruction accuracy, should be found.

In summary, our numerical experiments show that the two
multi-robot architectures are successful in scanning the 3D
environments, covering upwards of 90% of their surface, even
in the presence of noise in the depth measurements. In the next
section, we will extend our analysis and study the accuracy
and robustness of the centralized and distributed architectures
deployed on mobile robots in real-life conditions.

VIII. REAL-WORLD EXPERIMENTS

In this section, which is organized as Sect. VII, the results
of our hardware experiments are presented and discussed.
To cope with variable environmental conditions (e.g. lighting
change during the day), and slight differences in robot config-
uration (camera calibration, level of charge of the battery, etc.),
a statistical analysis over multiple trials has been carried out.

1) Robots: The experiments have been conducted with a
team of 4 identical Wifibots7. Each robot is equipped with an
Intel NUC7i7BNH computer, a stereo rig with two IDS UI-
1241-LE cameras (baseline B = 26 cm), and a Wi-Fi system
to communicate with a ground station. An HQ camera (IDS
UI-3252-LE) is also installed on each robot to generate a GT
map (for more details on the software/hardware specifications,
see [70]). The other parameters used in our experiments
are reported in Table VI. Only minor changes have been
made to adapt our ROS-based system to the real sensors and
physical constraints of the Wifibots. In particular, the code
that generated the emulated depth maps and odometry, has
been replaced with validated software modules: the depth
maps are computed with the ELAS algorithm [72], and the
pose of the robots is estimated with the vision-based eVO

7https://wifibot.com/

algorithm [73]. This latter algorithm does not address the loop
closure problem: hence, a localization drift, proportional to
the distance traveled may occur. In the centralized architec-
ture, the map is updated upon receipt of a new depth map
(at around 1 Hz). Instead, in the distributed architecture, a
new patch is stored and broadcast to the robots, every time
that 5 depth maps have been integrated into the current TSDF
map. The mapping and planning modules of the centralized
and distributed architectures are identical to those presented
in Sect. VII-.2.

2) Environments: Two different indoor environments have
been considered in our experiments. An 8 × 7 × 2 m3 Test
arena, consisting of a central obstacle surrounded by four
walls covered by mattresses (green in Fig. 6-[top-left]), and an
underground 21 × 14 × 2 m3 Parking lot, containing several
obstacles at ground level. The 2D maps and photos of these
environments are shown in Fig. 6.

3) Metrics: The same metrics as in the numerical exper-
iments, have been considered (please refer to Sect. VII-.3).
Data exchange has been monitored during the experiments:
in the single-robot and centralized multi-robot algorithms, it
pertains to depth maps, odometry and path messages trans-
mitted between the ground station and the vehicles, whereas
in the distributed algorithm, to patches, odometry, and paths
exchanged by the robots.

4) Results: Table VII summarizes our experimental results.
For Test arena, the reconstruction has been performed with
a single robot, and a team of 2 robots for the centralized and
distributed architectures. On the other hand, for Parking lot,
we considered a single robot and teams of 2, 3 and 4 robots
for the centralized architecture, and a team of 2 robots for
the distributed architecture. For each environment/team, we
carried out 5 trials with identical initial positions and orienta-
tions for the robots. Fig. 7 shows different snapshots of the 3D
reconstruction of Parking lot, obtained with the centralized
architecture. The GT, reconstructed mesh, and signed distance
errors for the distributed architecture, are reported in Fig. 8
(left, center, and right, respectively). The single-robot case
is considered as a reference, in both environments. From
Table VII, we can see that as the number of robots grows, the
completion time decreases while the cumulative path length
(at the team level), increases. Nevertheless, taken individually,

TABLE VI
PARAMETERS USED IN THE REAL-WORLD EXPERIMENTS.

Parameter Test arena Parking lot

Voxel resolution rv [m] 0.1 0.2
Threshold Wth 0.3 0.3
emax [m] 0.0866 0.1732
Camera range [m] [0.3, 5] [0.3, 5]
Camera FOV [deg.] (H, V) 90 × 60 90 × 60
Collision radius [m] 0.55 0.55
Robot nominal speed [m/s] 0.5 0.5
δpose [m] 1.3 1.3
dν [m] 2.0 2.0
dmax
ν [m] 3.5 3.5

Penalty term λtc 0.5 0.7
Penalty term λic 0.01 0.01
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Fig. 6. Real-world experiments: [top] Test arena, [bottom] Parking lot. [left] 2D maps, and [center, right] photos of the two environments, including two
panoramic views of Test arena. The circled numbers indicate obstacles or areas of interest.

Fig. 7. Real-world experiments: Parking lot, centralized architecture. From left to right, time progression expressed in percentage of final 3D reconstruction
(top view). In the rows, the number of robots varies between 1 and 4. The last column reports an isometric view of reconstructed mesh and the exploration
paths of the robots. The ceiling of the parking lot has been removed to provide visibility of the interior.

the distance traveled by each robot, decreases. For example,
in Parking lot, a team of 4 robots allows to reduce the
completion time by 31.1%, compared to the single-robot
case. Doubling the number of robots, the gain in completion
time is 6.25%, in Test arena. The distributed architecture
works just as well as the centralized one in terms of distance
traveled and time to completion. However, the volume of data
exchanged by the robots using the distributed architecture, in
“nominal operation”, is smaller (3.031 GB vs 6.029 GB for the
centralized case). In fact, during our experiments, additional
information (mainly meshes) was transmitted on the commu-
nication network, to monitor the progression of the robots.
This resulted in an 87.5% increase in the volume of data
exchanged (24.111 GB), which tended to saturate the network.

To circumvent this problem, simpler spatial representations
(such as, TSDF maps) could be used for visualization, which
is a priority area for future research. As an indication on
the scalability of the proposed algorithms, the last row of
Table VII, also reports the average bandwidth usage.

In the two environments, the robots were left free to cover
the entire accessible area. In the single-robot case, the recon-
structed mesh covered 89.1% of the surface of Parking lot for
a voxel resolution rv = 20 cm and an admissible error emax =
17.32 cm. For Test arena, instead, the surface coverage was
85.6% with rv = 10 cm and emax = 8.66 cm. Differently from
the numerical experiments (cf. Sect. VII-.5), as the number of
robots increases, surface coverage decreases, until reaching the
73% level with 4 robots (Parking lot), and the 80.3% level
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Fig. 8. Real-world experiments: [top] Test arena, [bottom] Parking lot. [left] GT point cloud. [center] Reconstructed mesh using the distributed architecture
with 2 robots. [right] Signed distance error: the color bar shows the error in meters with respect to the GT, computed with CloudCompare’s M3C2 plugin.

TABLE VII
RESULTS OF THE REAL-WORLD EXPERIMENTS (STATISTICS OVER 5 TRIALS).

Test arena Parking lot
Number of robots 1 2 1 2 3 4
Architecture − Central. Distrib. − Central. Distrib. Central. Central.
Cumulative path length [m] 20.6 27.0 24.2 106.0 113.6 107.1 134.2 161.0
Completion time [min.] 2′53′′ 2′45′′ 2′37′′ 13′56′′ 11′06′′ 10′41′′ 10′14′′ 9′36′′

Time gain [%] w.r.t. single robot − 6.25 9.25 − 20.30 23.30 26.60 31.10
Surface coverage [%] 85.6 80.3 91.0 89.1 81.1 88.4 76.4 73.0
M3C2 avg. error [cm] 0.27 0.40 0.12 0.01 −0.48 0.07 −0.18 0.61
M3C2 std. error [cm] 3.99 4.16 3.33 8.37 8.29 5.85 8.93 8.97
RMSE [cm] 4.00 4.18 3.33 8.37 8.30 5.85 8.94 8.99
Data exchanged [GB] 0.750 0.888 0.501 4.849 6.029 3.031 10.715 13.271
Bandwidth [Mb/s] 35.51 44.09 26.14 47.52 74.16 38.74 142.96 188.74

with 2 robots (Test arena). In fact, a depth map depends on
the pose estimated by a visual odometry algorithm, which is
prone to drift. The estimation error due to the drift, has an
impact on the TSDF volume when the depth map is integrated.
Hence, accumulation of errors is experienced, as the number
of robots increases: the overall mesh accuracy decreases, more
outliers need to be pruned, and less free space is covered. The
RMSE ranges between 8.37 cm and 8.99 cm for Parking
lot, and between 4 cm and 4.18 cm for Test arena. The
distributed mapping outperform the centralized mapping in
terms of surface coverage (88.4% vs 80.3%). This depends
on the superior accuracy of the distributed mapping algorithm
compared to the centralized one, for a given resolution. It is
also worth mentioning that the fusion policy in the distributed
case (cf. Sect. V-C), superimposes the TSDF patches with an
integration rule which prioritizes those which have maximum
weights, thus mitigating the impact of depth noise. Fig. 7 and
Fig. 8 show that the centralized and distributed algorithms
provide accurate 3D reconstruction, with a decent surface
coverage despite the odometry drift.

Finally, the difference in speed-up observed in the numerical
and real-world experiments with an increasing number of
robots, can be ascribed to the different specifications of the
robotic platforms and set-ups considered. In fact, the motion
of the UAVs in the 3D space, is far less constrained than that
of the Wifibots on the ground.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a new multi-robot sys-
tem for surface inspection of large-scale unknown 3D envi-
ronments. The proposed approach relies on Next-Best-View
planning to address the coordinated inspection problem, and
directly exploits the 3D surface representation. Centralized and
distributed architectures (TSGA and dist-TSGA) have been
developed and analyzed in detail. To illustrate and validate
our algorithms, we performed extensive numerical simulations
with quadrotor UAVs using two challenging ROS-Gazebo 3D
models, and real-world experiments with up to 4 wheeled
robots in two indoor environments. The simulation results
indicate that our solution is competitive with the state-of-
the-art in terms of navigation and reconstruction accuracy,
and that it can be easily tailored to different software stacks.
The experimental results complement the tests with synthetic
data, and confirm that our approach is versatile with different
types of robots and environments, and effective in generating
accurate meshes in real-time.

The experiments also provide evidence that odometry drift,
via uncertainty propagation, has a non-negligible impact on the
overall reconstruction process. To circumvent this problem,
one could envisage a hybrid approach which takes advan-
tage of a SLAM landmark map in the planning module.
This would endow the robots with loop-closure capabilities,
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thus minimizing the effect of drift and ultimately boosting the
map accuracy. In future works, we also place a premium on
a more efficient mechanism to monitor the progression of the
robots, and we plan to perform real-world experiments with
larger teams of heterogeneous agents, in obstacle-rich dynamic
environments.

MULTIMEDIA MATERIAL

The supplementary material accompanying this article, is a
video which presents a selection of numerical simulations and
real-world experiments reported in Sect. VII and Sect. VIII.
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