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Abstract: The robust tuning methodology developed in this paper aims at adjusting automat-
ically the hyperparameters of fault-diagnosis procedures for complex case studies. The strategy
should make an efficient use of computer simulations of these case studies, which will usually be
computationally expensive. To this end, Kriging-based optimization is called upon. Robustness
to environmental disturbances is achieved by continuous minimax optimization, and handled
through an iterative relaxation procedure. This strategy is applied to the automatic tuning of
a model-based fault-diagnosis scheme for a realistic aerospace application.
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1. INTRODUCTION

This paper addresses the automatic tuning of fault-
diagnosis procedures via the optimization of performance
on simulated, realistic case studies. There are at least two
reasons why such an automatic tuning is highly desirable.
The first one is to make the comparison of methods fairer.
A classical approach is by assessing their performance
on the same set of simulated case studies. Performance,
however, depends not only on the intrinsic quality of the
methods, but also on their tuning. Internal parameters,
(called hyperparameters in the following) should thus be
adjusted. Unequal knowledge of the candidate methods
may lead to a better tuning of the best-known ones, and
thus to a biased comparison. A second reason is that the
number of hyperparameters for a given method is often too
large for intuition alone to allow proper tuning, especially
when robustness with respect to uncertainty is taken into
account, as it should. Sources of uncertainty to be faced
include modeling errors, the imperfect nature of system
components, measurement noise, and degrees of freedom in
the case studies. The latter may be introduced voluntarily
in order to avoid tuning a method too specifically with
respect to the conditions of application. We assume that
uncertainty can be characterized by the fact that some
vector of environmental variables belongs to some known
compact set.

Search for the best tuning for the hyperparameters is for-
mulated as an optimization problem, where performance
is evaluated through simulation. Since simulating realistic,
complex test cases may be very costly, one should make
an efficient use of simulation samples. A fine-grid explo-
ration of input space or any other strategy that requires

a large number of samples is thus not well suited to the
task (Korniyenko et al. (2006)). We propose, instead, to
rely on Kriging-based optimization. Kriging, popularized
by Matheron (1963), is a method to build surrogate models
that is widely used in the domain of Computer Exper-
iments (Santner et al. (2003); Rasmussen and Williams
(2006)). It makes it possible not only to predict perfor-
mance on the basis of the simulations already carried out
but also to compute a statistical measure of confidence
in this prediction. These properties have been exploited
to design the Efficient Global Optimization (EGO) proce-
dure (Jones et al. (1998)). EGO iteratively suggests new
values of the parameters to be optimized (here, the hy-
perparameters), where performance should be evaluated.
Search is guided by a criterion that can be evaluated at
low cost, based on the Kriging prediction.

The problem addressed in this paper radically differs from
those previously handled with EGO, as we deal with two
types of vectors of variables, namely the hyperparameter
and environmental vectors. We look for a feasible hyperpa-
rameter vector that maximizes performance for the worst
feasible value of the vector of environmental variables.
Such a minimax optimization of costly-to-evaluate black-
box functions is a difficult and important problem that
does not seem to have been addressed in the literature. To
fill this gap, an algorithm is described in Section 2, whose
basic features have been presented in Marzat et al. (2011).
It combines Kriging-based optimization with an iterative
relaxation procedure to look for a minimax solution. Sec-
tion 3 is dedicated to the application of this strategy to the
robust automatic tuning of a scheme for the detection and
isolation of faults on the actuators of an aerospace vehicle,
taking into consideration several uncertainty sources.
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2. ROBUST TUNING METHODOLOGY

The starting point to tune a fault-diagnosis procedure via
the proposed methodology is to classify the input variables
of a computer simulation of the complex problem under
study into two vectors, namely the hyperparameters xc

and the environmental variables xe. Hyperparameters are
the tunable internal parameters of the algorithms com-
posing the fault-diagnosis scheme, while environmental
variables represent the sources of uncertainty affecting the
model of the system within the simulation. We assume
that a scalar performance index J(xc,xe), reflecting the
adequacy of the fault-diagnosis strategy, is computable for
any combination of the values of xc ∈ Xc and xe ∈ Xe. The
only requirement on Xc and Xe is for them to be known
compact sets.

2.1 Continuous minimax optimization

The objective of tuning is to find an optimal value x̂c of the
hyperparameter vector with respect to the performance
index J , for the worst value x̂e of the environmental
vector. Since J can only be evaluated at sampled values
of {xc,xe}, the problem to be solved amounts to the
continuous minimax optimization of a black-box function,

{x̂c, x̂e} = arg min
xc∈Xc

max
xe∈Xe

J (xc,xe) . (1)

This is a delicate issue, especially when the number of eval-
uations of the performance index is severely limited. Previ-
ous theoretical work on continuous minimax optimization
has focused on the development of algorithms that use the
analytical expressions of functions (see Rustem and Howe
(2002) for an overview). This allows one to take advantage
of the formal computation of gradient or sub-gradient
information, which is impractical here. From another point
of view, robust optimization for costly computer simula-
tions has been addressed through the probabilistic model-
ing of environmental variables and the inclusion of ran-
domness into Kriging-based optimization (Apley et al.
(2006)), leaving aside the worst-case formulation consid-
ered here.

To render (1) tractable, it is first rewritten as an equiv-
alent optimization problem with an infinite number of
constraints,{

min
xc∈Xc

τ,

subject to J(xc,xe) ≤ τ, ∀xe ∈ Xe.
(2)

The following procedure, proposed by Shimizu and Aiyoshi
(1980), aims at finding an approximate minimax solution
by relaxing the constraints iteratively.

(1) Pick x
(1)
e ∈ Xe, set Re =

{
x
(1)
e

}
and i = 1.

(2) Compute x(i)
c = arg min

xc∈Xc

{
max
xe∈Re

J(xc,xe)

}
(3) Compute x(i+1)

e = arg max
xe∈Xe

J(x(i)
c ,xe)

(4) If J(x(i)
c ,x(i+1)

e )− max
xe∈Re

J(x(i)
c ,xe) < ε then return

{x(i)
c ,x

(i+1)
e } as an approximate solution to the initial

minimax problem (1). Else, append x
(i+1)
e to Re,

increment i by 1 and go to Step 2.

Constraint relaxation is achieved at Step 2, where the func-
tion to be minimized is the maximum of the performance
index over the finite set Re. Steps 2 and 3 leave open
the choice of the optimization algorithm to compute the
optima required. Since the performance index is evaluated
via the costly simulation of case studies, the procedure
adopted should be able to cope with a severely restricted
simulation budget. To this end, we propose to employ
Kriging-based optimization, already used in Marzat et al.
(2010) for the automatic tuning of change-detection meth-
ods (without taking robustness into consideration).

2.2 Kriging-based optimization

Consider the search for a global minimizer of a func-
tion f(ξ) that is known only at sampled locations ξ ∈ X.
Assume that an initial set of n sampled points, Xn =
{ξ1, . . . , ξn}, is available, as well as the corresponding
function values fn = [f(ξ1), . . . , f(ξn)]T. Based on this
initial knowledge, Kriging aims at approximating f over
the continuous space X by a function much simpler to
compute. To do so, the regression model

F (ξ) = π(ξ)Tb + Z(ξ) (3)
is used, where π(ξ)Tb is a mean model, scalar product of a
vector of regressors π (e.g., polynomial in ξ) and a vector
of coefficients b to be estimated, while Z(ξ) is a zero-mean
Gaussian Process (GP). The covariance function of the GP
is expressed as

cov
(
Z(ξi, ξj)

)
= σ2

ZR(ξi, ξj), (4)
where σ2

Z is the process variance and R(·, ·) a correlation
function, possibly parameterized by a vector θ. In the
application presented below, the correlation function is
taken as

R(ξi, ξj) = exp

(
−

dimX∑
i=1

∣∣∣∣ξi(k)− ξj(k)

θk

∣∣∣∣2
)
, (5)

where ξi(k) is the k-th component of ξi and the positive
coefficients θk are scale factors that quantify the influence
of f(ξi) over f(ξj), as a function of the distance between
ξi and ξj . It should be kept in mind that other structures
may be appropriate (Santner et al. (2003)). The Kriging
predictor is then

f̂(ξ) = π (ξ)
T

b̂ + r (ξ)
T

R−1
(
fn −Πb̂

)
, (6)

where
R|i,j = R(ξi, ξj), {i, j} = 1, .., n,

r(ξ) = [R(ξ1, ξ), ..., R(ξn, ξ)]
T
,

Π = [π (ξ1) , ...,π (ξn)]
T
,

b̂ =
(
ΠTR−1Π

)−1
ΠTR−1fn.

(7)

The statistical properties of the Kriging model also make
it possible to obtain confidence intervals for the predic-
tion (6), by estimating the variance of the prediction error

σ̂2 (ξ) = σ2
Z

(
1− r (ξ)

T
R−1r (ξ)

)
. (8)

The process variance σ2
Z and the vector of parameters θ

of the correlation function (if any) can be estimated, for
instance, by maximum likelihood.

The Efficient Global Optimization (EGO) procedure (Jones
et al. (1998)), exploits this information to search itera-
tively for a global minimizer of f . The knowledge of (8)
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makes it possible to strike a compromise between local
search (in the neighborhood of the current estimate of
the minimizer) and global search (where uncertainty of
the prediction is strong). EGO is initialized by sampling
n points in X (as a rule of thumb, one may use n = 10 ×
dim ξ) and computing their corresponding function values.
It then proceeds as follows,

(1) Fit a Kriging model on available data {Xn, fn}
(2) Find fnmin = min

i=1,...,n
{f(ξi)}

(3) Find ξn+1 = arg max
ξ∈X

{
EI
(
ξ, fnmin, f̂ , σ̂

)}
, see (9)

(4) Append ξn+1 to Xn and f(ξn+1) to fn
(5) n← n+ 1
(6) If n > nmax (budget exhausted), return fnmin as an

estimate for the global minimum. Else go to Step 1.

The Expected Improvement (EI) criterion, used at Step 3,
is evaluated as

EI
(
ξ, fnmin, f̂ , σ̂

)
= σ̂ (ξ) [uΦ (u) + φ (u)] , (9)

where Φ is the cumulative distribution function and φ the
probability density function of the normalized Gaussian
distribution N (0, 1), and where

u =
fnmin − f̂ (ξ)

σ̂ (ξ)
. (10)

By optimizing this criterion, EGO achieves an iterative
search for the global minimum of f and an associated
global minimizer. It boils down to solving at each step an
optimization problem at a low computational cost, since EI
has a closed-form expression, instead of the cumbersome
initial black-box optimization problem.

Two EGO routines should be used to tackle the optimiza-
tion Steps 2 and 3 of the minimax procedure described in
Section 2.1. The parameters of the complete procedure are
thus the budgets of evaluations, which include the evalua-
tions involved in the initial sampling, and the threshold ε.
Latin Hypercube Sampling is used for initialization, while
the intermediate maximization of the EI criterion at Step 3
is addressed by the DIRECT optimization procedure, as
recommended by Sasena (2002).

3. APPLICATION

A simple aeronautical example was presented in Marzat
et al. (2011) to illustrate the potential of the methodology.
In this section, a much more intricate problem is consid-
ered, with 6 hyperparameters and 7 sources of uncertainty.

3.1 Simulation

Consider a deep-space satellite with 16 thrusters (orga-
nized in 4 sets), similar to the one presented by Williamson
et al. (2009) or Patton et al. (2010). Its general shape is
that of a cube with side length 2 m. Figure 1 summarizes
the simulation of the closed-loop control of the satellite.
The thrusters may suffer faults (biases) that are to be
detected by a bank of nonlinear observers coupled with
statistical tests. Sensors are assumed to be non-faulty in
the setup considered.

Fig. 1. Simulation scheme

Nonlinear dynamical model The 13-dimensional state
vector comprises the position p and velocity v of the satel-
lite (3 components each), the quaternion q (4 components)
and the angular velocity ω (3 components). The vector of
the control variables of the 16 thrusters is denoted by u.
The deterministic part of the (nonlinear) dynamical model
is then 

ṗ = v

v̇ = m−1 (Rbi(q)Btu)

q̇ = 0.5 (Rq(ω)q)

ω̇ = I−1 (ω × Iω + Bru)

, (11)

wherem is the satellite mass, I its inertia matrix (diagonal
in the nominal case), Bt and Br represent respectively the
translational and rotational effect of the thruster inputs
on the satellite motion. The matrices Rq(ω) and Rbi(q)
manage the changes of coordinates from a fixed reference
frame to a frame linked to the body of the vehicle.

An inertial navigation system (INS) makes use of an
inertial measurement unit (IMU) to provide an estimate
of the state vector. The IMU measurements are assumed
to be corrupted by an additive Gaussian white noise, with
zero mean and nominal standard deviation as indicated in
Table 1.

Table 1. Nominal uncertainty parameters

Type of uncertainty Standard deviation

Gyro noise 0.01 deg · s−1

Accelerometer noise 10−6 m · s−2

Control inaccuracy 5N

Control law and allocation of actuators The satellite
should follow a reference trajectory with a desired ori-
entation, while minimizing power consumption (minimal
speed). Two state feedback laws are designed in a decou-
pled way. The first one is for position and speed control and
the second one for orientation and angular velocity con-
trol. Both designs are based on proportional controllers,
the outputs of which follow a change of coordinates to
cope with the nonlinearities of (11) (see Wie (1998)).
The nonlinear iterative pseudoinverse control allocation
procedure (Jin et al. (1995)) is used for mapping the 3
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forces and 3 torques provided by the control module on
the 16 thrusters. Each thruster operates from 0 to 100
N and the achieved control inputs are assumed to suffer
a random inaccuracy, as indicated in Table 1. Figure 2
shows the trajectory of the controlled satellite simulated
on 100 seconds, on which the effect of a thruster fault to
be detected could also be seen.

(a) Position

(b) Quaternion

Fig. 2. Simulation of satellite motion

Fault-detection strategy The fault considered is an
abrupt bias occurring on the first thruster at time 60 s.
A bank of Extended Unknown Input Observers (EUIO,
see Witczak (2007)), each of them associated to a CUSUM
statistical test (see Basseville and Nikiforov (1993)), is
employed to detect and isolate this fault. Each of the
16 filters of the bank uses all the inputs but one, and is
insensitive to faults on the input left out. Each residual
of the bank is analyzed by the statistical test to provide
a Boolean decision indicating whether the residual has
reacted. Decision on the presence of a fault is confirmed if
an alarm is raised by all of the Boolean decision functions
but the one corresponding to the fault to be detected.

The performance index reflecting the appropriate detec-
tion and isolation of a fault on the i-th thruster is thus
expressed as

J = Nrifd +

N∑
j=1, j 6=i

(
rjfd + rjnd

)
, (12)

where rjfd is the false-alarm rate and rjnd the non-detection
rate corresponding to the j-th decision function of the
bank. This translates the need of non-reaction, during the
entire simulation, for the decision function dedicated to
the fault to be detected, while the other decision functions
should react quickly after the occurrence of this fault.
The computation of these rates is achieved as indicated

in Bartyś et al. (2006). In the case considered here, N is
equal to 16, the number of thrusters.

3.2 Optimization problem setting

The components of the simulation that involve hyperpa-
rameters or environmental variables are highlighted in Fig-
ure 1. The hyperparameters of the fault-detection scheme
are the poles of the EUIOs and the parameters of the
associated CUSUM tests. Since all the thrusters act sym-
metrically and have the same power range, we use the
same observer tuning and statistical test for all the ele-
ments of the bank. Moreover, the placement of 4 multiple
poles instead of 13 single ones is considered. This choice
corresponds to the 4 vectors composing the state vector of
model (11), whose components have similar dynamics. The
6 resulting hyperparameters and their domains of variation
are indicated in Table 2.

Table 2. Hyperparameters xc(dim. 6)

Hyperparameters Domain

Poles of observer (p1−3, p4−6,
p7−10 and p11−13)

[−10;−0.1]4

CUSUM size of change µ [1; 10]

CUSUM threshold λ [0.1; 1]

The environmental variables are the size of fault (bias
on the first thruster control input), the deviation of the
noise levels on the IMU sensors with respect to their
nominal values, the position error on the center of mass
(CoM) along the three directions and the error on the
mass of the vehicle. The size of fault and noise levels have
an impact on the difficulty of fault detection. CoM and
mass errors represent the discrepancy between the actual
satellite model and the design model, which might disturb
decoupling and state estimation. The 7 environmental
variables and their domains of variation are in Table 3.

Table 3. Environmental variables xe(dim. 7)

Environmental variables Domain

Size of fault (N) [10; 50]

Noise level on translation sensors (%) [0; 200]

Noise level on rotation sensors (%) [0; 200]

Center of mass error x/y/z axis (m) [−0.2; 0.2]3

Uncertainty on mass (%) [−10; 10]

Tuning methodology The average computation time of
one evaluation of the performance index is 45 seconds on a
2.2 GHz CPU. To cope with this constraint, the simulation
budget (per iteration of the relaxation algorithm) has been
fixed to

• 60 LHS points followed by 60 iterations for the search
for x̂c (Step 2).
• 70 LHS points followed by 70 iterations for the search

for x̂e (Step 3).

The threshold for the termination of the iterative relax-
ation loop has been fixed to ε = 10−2.
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3.3 Results

Only two iterations of the minimax procedure were neces-
sary to obtain an error smaller than the threshold for the
relaxation loop. Table 4 displays the results at the end of
each of these iterations, including the estimated worst case
value x̂e and optimal tuning x̂c, and the number of evalu-
ations required. The approximate solution of the minimax
tuning problem is given by the estimates obtained at the
end of the second iteration, which needed 834 evaluations
of the performance index (about 10 hours of computation).
This amounts to 64 evaluations per dimension of the mini-
max problem, which is quite small in view of its complexity
and dimension.

Table 4. Minimax numerical results

Iteration number 0 1 2

x̂e

11.7

7

168.5

−0.19

−0.17

0

−6

10

199.9

89.9

0.07

0.13

−0.07

−6.3

10

1.58

44.4

−0.18

−0.02

−0.17

10

x̂c -

−2.62

−5.45

−4.73

−5.91

0.89

5.32

−1.2

−3.9

−6.6

−4.99

0.94

4.65

Evaluations of J 0 275 834

Figure 3 displays the exploration of the hyperparameter
and environmental spaces by EGO. These functions do not
seem to be trivial to optimize, since there seems to exist
several convenient hyperparameter tunings (Figure 3.a)
as well as several local maximizers for the environmental
variables (Figure 3.b). An intuitive location for the worst
case would correspond to the smallest size of fault (10
N), the highest noise levels (200%) and one of the bounds
of the remaining four environmental variables (errors on
the three coordinates of the CoM position and mass).
The performance for these 16 extrema values, the nominal
case [30, 100, 100, 0, 0, 0, 0] and the estimated worst case
are displayed on Figure 4, via a projection on two of the
environmental variables. It is thus interesting to remark
that common sense was misleading, as the estimated worst
case is not on the boundary of Xe. Figure 5 shows the 16
residuals obtained with the optimal tuning x̂c at the esti-
mated worst case x̂e. Figure 6 presents the corresponding
values of the decision functions. The first residual remains
globally closer to zero than the others, which react to the
fault at time 60 s, even if the adverse environmental con-
ditions diminish these reactions compared to what would
have been obtained in the nominal case. The method and
the associated optimal tuning thus seem sufficient to cope
with the range of sources of uncertainty considered.

4. CONCLUSIONS AND PERSPECTIVES

This paper has described the application of a robust auto-
matic tuning methodology for fault-diagnosis procedures

(a) Red point: estimated best tuning

(b) Red point: estimated worst case

Fig. 3. Exploration of hyperparameter (a) and environ-
mental (b) spaces (projections)

Fig. 4. Performance for extrema, nominal and worst-case
(as estimated) disturbances with optimal tuning

to a realistic case study from the aerospace domain. The
idea of the method is to consider this problem as the
continuous minimax optimization of a black-box function,
which is the diagnosis performance response to a choice
of hyperparameters and uncertainty conditions. A dedi-
cated relaxation algorithm is used to tackle this complex
problem, taking advantage of Kriging and the associated
EGO procedure for the iterative search for an optimum.
For the application presented, a minimax optimal tuning
is obtained at a reasonable computational cost. Beyond
the results presented here, it seems important to point out
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that a method for the robust minimax tuning of hyperpa-
rameters based on a few costly simulations is now available
and should find many applications in various fields. Future
work includes testing other realistic applications and the-
oretical developments on the introduction of constraints
other than bounds on the input domains.
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