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Abstract: This paper investigates the on-line design of nonlinear model predictive control
by the use of Kriging as a surrogate model for optimization. This representation is able to
address various optimization problems at a very reduced computational cost. It is thus advocated
here to deal with nonlinear models in the context of NMPC. One of the main objectives is to
assess whether this strategy may be processed in real-time, while ensuring accurate control. An
application to the guidance law design of an unmanned aerial vehicle is reported to illustrate
the resulting performance.
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1. INTRODUCTION

Model Predictive Control (MPC) uses a dynamical model
of a system to predict its future state on a time horizon.
Using this prediction, an open-loop performance criterion
is optimized at each time step to determine the sequence
of control inputs that should be applied to fulfill a desired
objective (Findeisen et al. (2003)). This scheme makes
it possible to take into account an accurate model of
the evolution of the system as well as changes in the
environment, since new control inputs are computed on
the basis of measurements acquired in real time. Many
applications have been reported (Garcia et al. (1989)), the
majority being based on linear models while a few use
nonlinear ones (Qin and Badgwell (2003)).

Nonlinear model predictive control (NMPC) has raised
many theoretical and practical problems. First of all, un-
like linear models, it is very difficult to obtain an analytical
solution to the optimization problem that provides the
control inputs. A lot of approximation techniques have
been developed, most of them being based on linearization
or parameterization of the state or input spaces (see, e.g.,
Singh and Fuller (2001) or Kang and Hedrick (2009)) or
learning techniques (e.g., neural networks in Witt et al.
(2007)). This may lead to a loss of accuracy, but also to a
heavy computational cost, which is cumbersome regarding
real-time processing. A potential way of overcoming these
issues is to use a surrogate model for representing the
criterion evolution.

Kriging is a statistical interpolation tool using Gaussian
Processes (GP) to approximate continuously a function
whose values are known at sampled input points. It also
provides a level of confidence in this prediction (Kleijnen
(2009)). This additional knowledge has made it possi-
ble to design an iterative procedure that looks for the
global optimum of the function via a trade-off between
the exploration of unknown areas and local search. This
algorithm, named Efficient Global Optimization (EGO)

by Jones et al. (1998), showed the ability to address mul-
tivariate optimization at a low computational cost, which
can be quantified in terms of number of evaluations of the
optimized function (see, e.g., Sasena (2002); Santner et al.
(2003)). These tools seem to be promising contenders to
solve complex nonlinear optimization problem in reason-
able time and with sufficient accuracy.

The use of GP was investigated in Deisenroth et al. (2009)
for approximating the functions involved in dynamic pro-
gramming on state and input space samplings, for optimal
control purpose. This was shown to yield convincing results
for a LQ problem and a pendulum swing-up. However, the
potential of Kriging-based optimization was not exploited
to obtain the control commands. Another application, in-
volving EGO this time, has been reported in Defretin et al.
(2010) to tackle the active recognition of an object from a
database via reinforcement learning. This setup improved
the recognition performance compared to state-of-the-art
solutions, under strict computational constraints.

In this paper, we propose to profit from the properties of
Kriging and EGO to address the on-line implementation
of nonlinear model predictive control. The idea is to
approximate by a Kriging model the function between
the vector of inputs on the prediction horizon and the
quality criterion to be optimized. At each time step,
the computation of this function implies the numerical
integration of the nonlinear dynamical model on this
prediction horizon. One of the main interests of EGO is
that the budget of evaluations of the function optimized
can be fixed by the user, which can be used to maintain
the computation time of one step of NMPC at a reasonable
value. An approach similar in spirit was introduced in Frew
(2005), where a random sampling of the input space was
used to pick a suboptimal solution to the control problem.
However, there was no iterative sampling policy to improve
the estimate of the optimum, unlike the procedure we
propose that makes an efficient use of the simulation
budget alloted.
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The basics of Kriging and EGO are described in Section 2,
along with the NMPC algorithm proposed. In Section 3,
an application of this new scheme to the guidance of an
Unmanned Aerial Vehicle (UAV) is presented. Several tests
have been performed to assess the accuracy of the response
and the computational load of the method. The guidance
of the vehicle with obstacle avoidance capability is also
reported. Conclusions and perspectives are discussed in
Section 4.

2. METHOD DESCRIPTION

2.1 Nonlinear model predictive control

Model predictive control computes the control input by
solving on-line an optimization problem over a finite
horizon of time. Only a small part of the optimal control
sequence is applied to the system, and the computation
is repeated at the following instant in a receding way
(Garcia et al. (1989)). Although such approaches require
on-line computation, they are very interesting for their
ability to directly handle constraints on the input or on the
state of the system. A local optimality can be guaranteed
with respect to a given performance criterion and the
control action also takes into account a prediction of the
behavior of the system, which can be useful in the case of
trajectory tracking. It can be used to control continuous
nonlinear systems by using a discrete representation of
the control inputs, which is very well suited for practical
implementation. Closed-loop stability can be guaranteed
by using a state constraint that imposes norm contractions
of the predicted states of the system.

Consider that the system dynamics is described by the
state equation

ẋ(t) = f (x(t),u(t)) ∀t > 0

x(0) = x0
(1)

where x(t) ∈ Rnx is the system state vector and u(t) =
[u1(t), . . . , um(t)]T ∈ Rm its control input vector. The
nonlinear mapping f governs the dynamics of the system.
At any instant t on a time horizon T > 0, the prediction
model is

˙̄x(τ) = f̄ (x̄(τ),u(τ)) ∀τ ∈ [ t, t+ T ]

x̄(t) = x(t)
(2)

where x̄ is the predicted state. The cost function associated
to the desired performance of the system is defined as

y(t, x̄(t), T,u(.)) =

∫ t+T

t

q(x̄(τ),u(τ)) dτ + V (x̄(t+ T ))

(3)
where q(. , .) is a positive semi-definite form defined on
Rnx × Rm → R+ and V (.) a positive definite form on
Rnx → R+. At time t, the control is chosen so as to
minimize y, under constraints on the state and/or on the
input vectors. Let u∗t (.) be the control, solution of the
optimization problem
P(t, x(t)) : min

u(.)
y(t, x̄(t), T,u(.))

such that x̄(τ) ∈ X, ∀τ ∈ [t, t+ T ]

u(τ) ∈ U, ∀τ ∈ [t, t+ T ]

(4)

where X ⊂ Rnx and U ⊂ Rm are the constraints on the
state and the control input vectors. The predicted state x̄

is also constrained by the prediction model (2). According
to the receding horizon scheme, only u∗t (τ) for τ ∈ [t, t+ δ]
is applied to the sytem, where 0 < δ ≤ T is the sampling
time step at which the control input is applied to the sys-
tem. This defines the number of prediction steps h = T/δ
on the time horizon T . The whole procedure is repeated at
the next sampled instant of time to compute the following
control input vector. Note that the optimization process
used to compute the control can be stopped as soon as a
solution that satisfies the stabilizing constraint has been
found. Hence suboptimal solutions may be considered to
reduce the online computation burden.

On the time horizon T , the computation of y from (4)
depends on h successive control input vectors u, which are
aggregated in uh such that

uh =


u(t)

u(t+ δ)
...

u(t+ T − δ)


= [u1(t), . . . , um(t), . . . , u1(t+ T − δ), . . . , um(t+ T − δ)]T

(5)
The dimension of this vector is equal to m×h, namely the
product of the number of control inputs with the number
of prediction steps. The computation of y also requires
the numerical integration of the prediction model (2)
over [t, t + T ]. Given initial conditions for the predicted
state x̄(t) (e.g., from available sensor data), the cost
function (3) can be rewritten as

y(t, x̄(t), T,u(.)) = y(uh). (6)

The NMPC algorithm advocated in this paper aims at
finding an optimal sequence of control inputs u∗h minimiz-
ing y(·), under the constraints (2) and (4). A potential
approach to provide such solutions within a restricted
computation budget (implied by on-line processing) is the
use of surrogate models. Among the choice of possible
surrogates, Kriging (Lefebvre et al. (1996); Rasmussen
and Williams (2006); Kleijnen (2009)) has demonstrated
its potential usefulness to address such an optimization
problem at a low computational cost.

2.2 Basics of Kriging

Let yn = [y1, ..., yn] T be the criterion values obtained for n
simulations of the dynamic system (2) on the time horizon
T , corresponding to n initial samples of successive control
inputs on Uh,

Un =
[
u
(1)
h , ...,u

(n)
h

]T
. (7)

The Kriging surrogate approximation uses only these n
already available results to obtain a simple continuous pre-
diction model that can be processed quickly. The main idea
is to model the function y(uh) as a zero-mean Gaussian
process Y (uh) with covariance function cov (·, ·). Kriging
is then the search for the best unbiased linear predictor
of Y (·). Although the actual covariance cov (·, ·) is usually
unknown, it can be expressed as

cov
(
Y
(
u
(i)
h

)
, Y
(
u
(j)
h

))
= σ2

YR
(
u
(i)
h ,u

(j)
h

)
(8)
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where σ2
Y is the process variance, to be estimated on

the available data, and R (·) a parameterized correlation
function to be chosen. The intuitive idea behind the
assumption is that, the closer u

(i)
h is to u

(j)
h , the closer

y
(
u
(i)
h

)
should be to y

(
u
(j)
h

)
. The classical choice of

correlation function adopted in the present paper is the
squared exponential correlation function,

R
(
u
(i)
h ,u

(j)
h

)
= exp

(
−1

2
‖u(i)

h − u
(j)
h ‖

2

)
. (9)

Many other choices of correlation functions are possi-
ble (Santner et al. (2003)). The required characteristics
for the correlation function are to be equal to 1 when the
distance between two points is null, and to tend to zero
when this distance increases.

Following these assumptions, the Kriging prediction at any
point uh ∈ Uh is given by

Ŷ (uh) = rTR−1yn (10)
where

r =
[
R
(
uh,u

(1)
h

)
, ..., R

(
uh,u

(n)
h

)]T
R|i,j = R

(
u
(i)
h ,u

(j)
h

) (11)

This interpolating predictor is linear in yn, making it light
to compute. Another interesting property of Kriging, cru-
cial regarding global search, is the possibility to compute
the variance of the prediction error

σ̂2 (uh) = σ2
Y

(
1− rTR−1r

)
(12)

This provides a statistical confidence level in the pre-
diction, which can be used in particular to indicate the
locations in the input space where the original function
value is very uncertain.

2.3 Efficient Global Optimization (EGO)

The idea of Kriging-based optimization is to replace the
optimization of the function y, which is very expensive to
compute, by the optimization of a much lighter function
built on the Kriging model. An iterative procedure called
EGO has been designed to this end (see Jones et al.
(1998)). Given the past results yn obtained at Un, it uses
the knowledge of the variance of the prediction error (12)
and the Kriging prediction (10) to suggest an (n + 1)-th
point according to a criterion measuring the interest of
an additional evaluation to improve the optimum estima-
tion. A possible choice for this criterion is the Expected
Improvement (EI), whose closed-form expression is

EI
(
uh, σ̂, Ŷ , y

n
min

)
= σ̂ (uh) [Φ (w) + wφ (w)] , (13)

where

w =

(
ynmin − Ŷ (uh)

)
σ̂ (uh)

,

ynmin = min
i=1...n

y
(
u
(i)
h

)
,

(14)

and where Φ is the cumulative distribution function and φ
the probability density function of the normal distribution
N (0, 1). The best available estimator of the minimum of
y after the first n evaluations is ynmin. The EI criterion
achieves a trade-off between global search (where the
uncertainty measure σ̂ is high) and local search around

the best current optimum estimate. It is thus well suited
for global optimization.

A preliminary sampling step is required to obtain the n
points of the initial design Un. It has been achieved via
Latin Hypercube Sampling (LHS), but other space-filling
designs might be considered (McKay et al. (1979)). A
common rule of thumb is to choose n equal to 10 times
the dimension of the input space (Jones et al. (1998)). For
the NMPC problem under study, it yields n = 10×m×h.
The description of EGO is given in Algorithm 1. The
iterative loop stops when the maximal number of iter-
ations nmax is reached. This number could be adjusted
according to the embedded computational resources. In
the following application, it has been set to 10 iterations.
Our implementation uses the Adaptive Random Search
(ARS) optimization algorithm (Pronzato et al. (1984)) to
address the maximization of EI (Step 7 of Algorithm 1).
The maximal number of calls of the EI function (13) by
this global-purpose algorithm can be fixed, which makes it
possible to reduce the maximal computation time required
per iteration.

Theoretical results on the convergence of EGO have been
established recently by Vazquez and Bect (2010) or Bull
(2011). They have proven that, if the covariance function
is appropriate to the problem under study, the sampling
sequence converges at a high rate to the true global op-
timum. Correlation (9) corresponds to a smooth prior on
the cost function to be optimized, which is a reasonable
assumption for the real-world problem examined in Sec-
tion 3.

(1) Choose Un =
{
u
(1)
h , ...,u

(n)
h

}
by LHS in Uh

(2) Compute yn =
{
y
(
u
(1)
h

)
, ..., y

(
u
(n)
h

)}
(3) i← 0
(4) while i < nmax
(5) Fit a Kriging model on {Un,yn} with (10)
(6) Find ynmin = min

i=1...n

{
y
(
u
(i)
h

)}
.

(7) Find u
(n+1)
h = arg max

uh∈Uh
EI(uh, σ̂, Ŷ , y

n
min)

(8) Append u
(n+1)
h to Un and y

(
u
(n+1)
h

)
to yn

(9) Go to Step 5 with n← n+ 1 and i← i+ 1
(10) end while
(11) Return u∗h = arg min

i=1...n

{
y
(
u
(i)
h

)}
as a solution to

the NMPC optimization problem (4)

Algorithm 1. One step of NMPC with EGO

This procedure is repeated at each time step to find u∗h,
whose first component u(t) is then applied as the control
input vector of the dynamical system on the time interval
[t, t + δ]. The overall stability of the control strategy is
ensured by the MPC scheme itself, which should provide
a sequence of trajectories with decreasing cost. Moreover,
according to Scokaert et al. (1999), a suboptimal solution
at each step is sufficient to ensure stability, as long as it
remains feasible.
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Fig. 1. UAV modeling

3. EXAMPLE OF APPLICATION

3.1 UAV model

We consider the 3-degree-of-freedom lateral motion of an
UAV, assuming that its stabilization at a constant altitude
is ensured by a faster control loop. The state vector of this
dynamical system is x = [x, y, θ]T, where p = [x, y]T is
the position of the vehicle in the horizontal plane, and
θ its heading angle (see Figure 1). The control input is
u = ω, while the speed v is assumed to be regulated at the
constant value v0 = 2.5 m · s−1. The resulting dynamical
model is 

ẋ = v0 cos θ

ẏ = v0 sin θ

θ̇ = ω

(15)

This simplified (yet nonlinear) model is often used to
illustrate the potential of guidance algorithms (see, e.g.,
Singh and Fuller (2001); Frew (2005); Kang and Hedrick
(2009)). The guidance problem to be solved is the ability
of the vehicle to reach a desired position pg = [xg, yg]T,
with minimum control input values. The associated cost
function, for h prediction steps, is given by

y =

h∑
k=1

(
‖p(k)− pg‖2 + u(k)2

)
, (16)

under the control constraint u = ω ∈ [−1; 1] rad · s−1. The
initial position of the vehicle in all tests is pi = [2, 3]T and
the initial heading angle is θi = 1 rad.

3.2 Results and computational load

The tests reported have been performed using a C++
implementation on a 2.2 GHz Intel CPU. In particular,
the integration of the nonlinear dynamical model of the
system has been achieved with a fourth-order Runge-
Kutta scheme.

Figure 2 shows the trajectories obtained with the method
proposed to reach pg = [15, 25]T. The time horizon is fixed
to T = 1 second with time steps varying from δ = 200 ms
to δ = 500 ms, which changes the number of steps h
accordingly. It could be seen that an adequate trajectory
is obtained for all the combinations of parameters, with
also reduced power consumption as control input values
remain small (Figure 3).

It should be kept in mind that the NMPC algorithm
proposed presents randomness induced by the choice of
initial interpolation points at Step 1 of Algorithm 1. To

Fig. 2. Optimal guidance with a time horizon of 1 second,
for various number and duration of time steps

Fig. 3. Evolution of control inputs (T = 4× 250 ms)

illustrate the influence of this randomness, 20 simulations
have been run with a prediction horizon of T = 2 ×
500 ms. The results, displayed on Figure 4, show very
small sensitivity to this initialization, since the obtained
trajectories are quite close to each other.

Fig. 4. 20 simulated trajectories (T = 2× 500 ms)

The computation time required for each step of the
NMPC algorithm has been evaluated for different param-
eter choices. The averaged results and the corresponding
standard deviations are reported in Table 1. What is
most remarkable is that the real-time processing condition
is verified for all configurations, within the computation
environment mentioned before. This is very interesting,
considering that these nonlinear optimization problems
are solved on spaces whose dimensions range from 1 to 7.
Figure 5 displays the average computation time and associ-
ated dispersion for computing one step, as a function of the
prediction horizon. The mean computation time and its
associated 95% confidence level appear to be significantly
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lower than the real-time processing constraint of 500 ms
that was alloted in this case. With a larger number of
inputs, the same increase in computation time will be
observed and thus the number of prediction steps might
need to be reduced.

Table 1. Computation time per NMPC step
(averaged on 200 iterations)

Optimization parameters Mean time Std. dev.

1 time step of 500 ms 22 ms 16 ms

2 time steps of 500 ms 49 ms 28 ms

3 time steps of 335 ms 72 ms 34 ms

3 time steps of 500 ms 97 ms 44 ms

4 time steps of 250 ms 166 ms 115 ms

4 time steps of 500 ms 139 ms 53 ms

5 time steps of 200 ms 92 ms 20 ms

5 time steps of 500 ms 174 ms 39 ms

6 time steps of 500 ms 250 ms 56 ms

7 time steps of 500 ms 393 ms 59 ms

Fig. 5. Computation times per step (time step 500 ms)

3.3 Results with limited control range

We now assume that the control range is severely limited,
such that u = ω ∈ [−0.1; 0.1] rad · s−1. The optimal
guidance algorithm is required to make the vehicle reach
the location pg = [30,−20]T. On Figure 6, the number of
steps is fixed to h = 2, while different time steps are tested.
The obtained results are consistent with what could have
been expected, since the trajectory of the UAV is shorter
when the vehicle receives control inputs more frequently.
Figure 7 displays the resulting trajectories for several goal
locations with the same prediction horizon, T = 4 × 250
ms. The algorithm shows here its ability to cope with the
constraints on the control input and to guide successfully
the vehicle towards final goals at various locations in space.

3.4 Obstacle avoidance ability

One of the main interest of the NMPC algorithm proposed
is that it can deal with non-quadratic or even discon-
tinuous cost functions. Consider for example the same

Fig. 6. Limited control range, h = 2 and various time steps

Fig. 7. Limited control range, different goal locations,
T = 2× 250 ms

guidance problem where there exists a forbidden area S
that the vehicle should not cross (green zone in Figure 8).
A simple way to deal with this constraint is to penalize
the cost function accordingly,

yobs =

h∑
k=1

(
‖p(k)− pg‖2 + u(k)2 + o(k)

)
where o(k) =

{
1 if p(k) ∈ S
0 otherwise

.

(17)

The membership test of the predicted position of the
vehicle with the area S introduces a discontinuity in
the cost function. The resulting trajectory, presented in
Figure 8, shows that the NMPC scheme using EGO is
indeed able to optimize this non-conventional optimization
problem and find an adequate solution for the guidance of
the UAV that circumvents the obstacle.

4. CONCLUSIONS AND PERSPECTIVES

This paper has proposed the introduction of Kriging-based
optimization within the nonlinear model predictive control
framework. The EGO algorithm exploits the statistical
properties of the Kriging interpolation to search for a
global minimizer of a black-box function under a very
restricted budget of evaluations. It thus seems to be a
promising way to determine optimal sequences of control
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Fig. 8. Illustration of obstacle avoidance ability

inputs minimizing a desired cost function in the context of
NMPC. In particular, this does not require the lineariza-
tion of the dynamical model of the system.

The application of this strategy to the guidance of a
reduced-order UAV model has highlighted the potential
of this method. Accurate and reproducible results have
been obtained, for various configurations of prediction
horizon and under strict control constraints. Above all,
the computation time required by one iteration of the
NMPC procedure is compatible with real-time processing
constraints, even if this remains to be assessed by future
real embedded tests.

The associated dimension of the input space for the opti-
mization problem varied from 1 to 7 here. This dimension
corresponded to the number of time steps considered in the
cost function, since the control was unidimensional. The
algorithm proposed should be able to deal with higher-
dimensional problems. To remain implementable, this may
require increasing the control-application time step while
keeping it within the range of classical guidance frequen-
cies.

An interesting feature of the method is its ability to deal
with non-quadratic and possibly discontinuous cost func-
tions. This has been illustrated through the optimization
of a cost function penalizing the crossing of an obstacle
area, with successful results. This paves the way for the ef-
ficient handling of more complex cost functions for NMPC
applications.
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